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ABSTRACT: The angular dependence of dynamic light scattering from five degraded potato starch samples
was studied. The study allowed the determination of internal modes of motion in branched structures
that resemble hyperbranched polymers. The properties of the investigated starches are dominated by
the large size of the amylopectin. Measurements were made at infinite dilution (c ) 0) and at
concentrations c > c* where c* is the overlap concentration. The time correlation function (TCF) at low
concentration was analyzed by its first cumulant at low values of qRg and in the asymptotic region of qRg

> 2. The first cumulant Γ describes the initial decay of the TCF, g1(q,t). A double logarithmic plot of
Γ/q2 ≡ Dapp(q) against qRg gave a curve that lies between those for hard spheres and flexible coils. In
contrast to linear chains, it showed an asymptotic slope of 0.80-0.85 instead of the theoretically expected
slope of 1.00. The reduced first cumulant Γ*(q) ≡ (Γ/q3)(η0/kT) did not approach a constant plateau at
large q but decayed continuously below the experimentally observed plateau value for linear chains. The
reason for this behavior is seen in the high branching density and a loss of internal flexibility. In a
second part, the angular dependence of the first cumulant in the semidilute regime, up to c/c* ) 5, was
measured. The data from the different concentrations could be condensed to one common master curve
when an empirical scaling parameter Rh(c) was used. A plot of the TCF’s from the various concentra-
tions as a function of Γ(q,c,)t resulted in q-independent shape functions g1(Γt), which gradually changed
from Zimm to Rouse behavior when the concentration was increased beyond the overlap concentration
c*. This change is interpreted as a result of hydrodynamic screening.

Introduction
Dynamic light scattering (LS) is mostly used for a

quick determination of translational diffusion coef-
ficients. The procedure is simple for spherical particles
or if the particles are small compared to the wavelength
of the light used. Measurements at only one scattering
angle are sufficient in these cases. A wrong answer is
obtained, however, with large linear or branched chain
molecules if measurements are made only at one angle,
e.g., 90°. The translational diffusion coefficient is a
macroscopic transport coefficient, but dynamic light
scattering is actually a technique that registers all types
of motions due to the thermal fluctuation of a system
in thermodynamic equilibrium. If the measurements
are made in the limit of small q ) (4π/λ) sin(θ/2) values
such that qRg , 1, with Rg the radius of gyration at
zero concentration, the whole particle or macromolecule
is seen. Under these conditions the translational motion
of the center of mass is probed. As was shown by
Einstein,1,2 the correct translational diffusion coefficient
is also obtained from Brownian motion and the molec-
ular friction coefficient f ) 6πη0Rh according to the
relationship

in whichRh is a hydrodynamic equivalent sphere radius.
This Stokes-Einstein equation is of eminent impor-
tance, as it allows the description of an empirical
transport coefficient by a molecular parameter that
describes the dimensions of the molecule.
Dynamic LS measurements made under conditions

of qRg > 2, on the other hand, probe distances in a

particle that are much smaller than the particle diam-
eter. For most colloidal particles there will be no
difference in the result for the diffusion coefficient when
the measurements are made at 90° or any other scat-
tering angle. These particles are essentially rigid, and
thus only the translational motion of the center of mass
can be observed. Some macromolecules are composed
of linear, branched, or cross-linked chains, and these
chains mostly possess a remarkable segmental mobility.
These internal modes of motion are superimposed upon
the translational motion3 of the center of mass. The
correct translational diffusion coefficient is now obtained
only after extrapolating the data of Γ/q2 to zero scat-
tering angle,3,4 where Γ is the first cumulant of the field
time correlation function (TCF), g1(q,t), obtained by
dynamic LS. The data of Γ/q2 are angular dependent
when objects with internal flexibility are studied and
increase with the scattering angle. In these cases it is
useful to define an apparent diffusion coefficient

The extrapolation to zero scattering angle is facilitated
by a result of perturbation calculations for small qRg,
which yielded a linear increase of Dapp(q) in terms of
q2Rg

2 that is given by5

Here, Dz is the z-average of the translational diffusion
coefficient and Ch is a structure sensitive coefficient5,6
that will be discussed in greater detail below.
Relationships have been developed also for the a-

symptotic region of very large qRg. They were first
derived by de Gennes7 and Dubois-Violette and de
Gennes8 and further improved by Akcasu, Han, and
Benmouna.9 The theories are, however, restricted to

X Abstract published in Advance ACS Abstracts, October 1,
1997.

D ) kT
f

) kT
6πη0Rh

(1)

Γ/q2 ≡ Dapp(q) (2)

Dapp(q) ) Dz[1 + Ch(q
2Rg

2) - ...] (3)

6966 Macromolecules 1997, 30, 6966-6973

S0024-9297(96)01776-7 CCC: $14.00 © 1997 American Chemical Society



linear and flexible chains. Although the applicability
of the derived results to nonlinear systems may be
questioned, these relationships remain to be a useful
guide also for such structures. This expectation is based
on the following persuasive arguments: At large qRg
only short sections of the macromolecule are seen.
These sections can be assumed to consist of linear
segments as long as the branching density is low.
However, in a recent paper10 we presented results from
a number of randomly branched systems that exhibited
characteristic deviations from the linear systems. The
mobility was clearly reduced by the attachment of the
short chain sections to branching points.10
The present contribution deals with dynamic light

scattering in a rather wide range of concentration of
degraded starch samples in 0.5 M NaOH solutions. The
samples were the same as measured by static light
scattering. The molecular parameters and the proper-
ties of the angular dependence of the scattered light
were given in papers 1-3.11 The results will be re-
peated here, only if needed; the main data of the five
samples used in this study are given in Table 1. We
will focus mainly on the following two questions:
(1) Can all of the degraded starch samples be de-

scribed at small qRg by eq 3 with the same Ch param-
eter?
(2) Can the angular dependence of the dynamic LS

data at different concentrations be represented in a
scaled form similar to those obtained by static LS data?
The first question is related to the properties of

individual macromolecules at zero concentration and the
second one to the behavior in semidilute solution. The
present investigation is complex in several aspects. Two
may be mentioned.
First, the dynamics of individual molecules may be

considered. Synthetic linear chains are often so small
in size that a range qRg > 2 cannot be realized by LS.
Here only the translational diffusion contributes to the
time correlation function (TCF). In only a few cases
have very long chains been synsthesized and studied
in a region of qRg = 3 and larger.1,9,13-19 In that region
the TCF of dynamic LS has already become solely
dependent on the internal motions.1,10 The latter are
segmental motions with respect to the center of mass.
Large sized macromolecules, on the other hand, are
easily obtained with branched materials. The region
of internal motions is here readily entered. However,
the interpretation of data is difficult since no strict
theory exists at present on the dynamics of branched
macromolecules.
Second, the regime of semidilute solutions may be

regarded. This regime is well understood for linear
chains due to the scaling concept by de Gennes20 and
the analytic theory by Edwards.21 The coils of linear
chains can fully interpenetrate each other, but this is
possible only with the shells at the outside of the
branched macromolecules. The multiple branching

makes a deeper penetration impossible. This fact has
some unexpected effects on the internal dynamics.

Experimental Conditions
The dynamic light scattering measurements were carried

out with an ALV instrument (ALV GmbH, Langen, Hessen,
Germany) that was equipped with an ALV 3000 or ALV 5000
autocorrelator, respectively. All solutions were filtered three
times through Millipore filters of 1.2, 0.8, 0.45, or 0.2 µm pore
size, respectively, depending on the molar mass of the samples,
the third time directly into the cylindrical light scattering cells
of 0.8 cm in diameter. The cells were rinsed before use by
freshly distilled acetone in a special rinsing apparatus to
remove possibly adhered dust particles.
The dynamic measurements were first made with the ALV

3000 correlator that has a linear spacing of the delay times,
and later with the ALV 5000 correlator in which the delay time
is pseudologarithmically spaced; i.e., after each 8 linear time
intervals the delay time is doubled; the total number of
channels is 256. Within experimental errors the same trans-
lational diffusion coefficient was obtained with these two types
of correlator, when the data were extrapolated to zero scat-
tering angle.
At large scattering angles the apparent diffusion coefficients,

defined by eq 2, displayed a strong angular dependence that
was more pronounced for the high molar mass samples.
Unfortunately, very different results were obtained with the
ALV 3000 and ALV 5000 correlators, respectively, when a
three-cumulant fit was applied to the data of the TCF at large
scattering angles. The problem could be solved by reducing
the number of channels. For the logarithmic ALV 5000
correlator we took care of the condition that (i) all cumulants
had to be positive, and (ii) Γ2/2! should be almost equal in value
with Γ3/3!, where Γ2 and Γ3 are the second and third cumulants
in the expansion of the field time correlation function g1(q,t)
that is given by

Γ1 ) Γ is the first cumulant that is connected with the
apparent diffusion coefficient through the relationship of eq
3. The above quoted conditions were fulfilled for the ALV 5000
correlator when the time correlation function (TCF) has
decayed not more than by 30% of its initial value. Consistent
results were obtained with the ALV 3000 correlator when the
number of channels was reduced to 20 channels. Figure 1
shows the effect of channel reduction for the measurements
with the ALV 3000 correlator and the result from the ALV
5000 correlator.

Results and Discussion
Dilute Solutions: Behavior at Small qRg. As was

already mentioned in the introduction, the initial part

Table 1. Main Molecular Parameters of the Degraded
Starches Used in This Contributiona

sample
10-6Mw
(g/mol)

Rg
(nm)

105A2
[(mol mL)/g2]

108Dz
(cm2/s)

Rh
(nm) F

[η]
(mL/g)

LD16 1.7 48 6.0 6.2 35 1.37 47.5
LD12 5.2 70 2.8 3.5 62 1.14 71.4
LD19 14.5 113 1.3 2.6 84 1.35 93.2
LD18 43 180 0.82 1.4 150 1.2 133.2
LD17 64 190 0.60 1.0 215 0.88 130.2
a The parameter F is defined as Rg/Rh for the same molar mass

Mw. The other quantities have the usual meaning.

Figure 1. Effect of the channel number reduction on the
apparent diffusion coefficient when using the ALV 3000
(linear) correlator and applying a three cumulant fit. Good
agreement with the ALV 5000 correlator is obtained when
extrapolating the ALV 3000 data to zero channel number (i.e.,
zero delay time).

ln g1(t,q) ) Γ0 - Γ1t + (Γ2/2!)t
2 - (Γ3/3!)t

3 + ... (4)
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of the angular dependent apparent diffusion coefficient
can be described by eq 3. In this equation the param-
eter Ch is related to the slowest mode of internal
motion.12 For flexible linear chains in a good solvent,
which obey the Schulz-Flory size distribution, the value
is Ch ) 0.2.5 Branching in general reduces this value,5,6
e.g., to 0.102 for star molecules with many arms, but
this decrease is partly compensated by a broad size
distribution. For hard spheres the value is zero1 and
for thin stiff rods one has Ch ) 1/30 ) 0.033.12 Evidently,
a decrease in the Ch parameter indicates a decrease of
the internal segment mobility. The internal modes of
motions have to be distinguished from the local mobility.
The local mobility is confined to the motions within
segments that are not longer than one Kuhn segment.
The internal motions, on the other hand, comprise much
longer chain sections such that Gaussian statistics are
still approximately fulfilled but the segments must be
considerably shorter than the radius of gyration.22,23
The accurate determination of the Ch parameter is a

difficult experimental task since this coefficient is the
result from two initial slopes: The mean square radius
of gyration is obtained from the initial slope in a Zimm
plot of static LS data. The Ch coefficient, on the other
hand, determines the slope of Dapp(q) against (qRg)2 (see
eq 3).
Figure 2 shows the result of two procedures. In the

first the initial slopes of the q2 dependencies in static
and in dynamic LS were determined, and Ch was
calculated according to eq 2. In a second approach we
applied a previously derived approximation5,6,10

with

The validity of eq 6 is easily proven for (qRg)2 , 1 by
using for the left hand side the approximation of eq 3
and for the right hand side the well-known series
expansion of the particle scattering factor

Comparing the q2 terms on both sides gives eq 6. Rθ
and Rθ)0 are the Rayleigh ratios of the scattered light
at scattering angles θ and θ ) 0 (forward scattering),

respectively. The extended validity of eq 6 for large qRg
is somewhat surprising but was found by numerical
calculation of Dapp(q) and P(q) by means of the cascade
theory of branching.5,6
The two procedures gave for each of the five samples

a surprisingly good agreement within deviations of ∆Ch
) (0.05. Above Mw ) 5 × 105 g/mol, or Rg ) 30 nm, a
constant plateau value of Ch ) 0.11 ( 0.02 was obtained.
This value agrees satisfactorily with the calculated one
from the A-〈C

B polycondensation model (see appendix of
part 3 of this series11c).
In a third approach we assumed that the scaled curve

Dapp(q)/Dz is a universal function of q2Rg
2 and holds for

all starch fractions. Figure 3 shows the result for the
five fractions that are large enough to develop an
angular dependence. A common master curve is ob-
tained for all samples. Estimations of the initial slope
by different fitting procedures gave values between Ch
) 0.102 and 0.134, which agree well with the average
Ch ) 0.11 ( 0.02 obtained by the two other procedures.
These results allow us to answer the first question

posed in the Introduction: The initial part of Dapp(q)/
Dz is indeed universal for all degraded starch samples
and can, within experimental errors, be described by a
coefficient Ch ) 0.118 ( 0.016. The occurrence of a
master curve as given by eq 5 is unexpected, since the
particle scattering factors in static LS of these samples
could not be transformed into one universal curve.
Dilute Solutions: Asymptotic Behavior. The

observed angular dependence is a clear indication for
internal segmental motions.4,5,9,10 It is instructive to
plot double logarithmically Dapp(q)/Dz against qRg and
to have a closer look at the asymptotic behavior.4-10,13,14

Both variables in such a plot are dimensionless and are
scaled quantities. Therefore, a certain universality can
be expected. Figure 4 shows the result together with
the curves for randomly branched or randomly cross-
linked macromolecules. These curves are compared
with those for linear chains in a good and poor solvent
as predicted by theories.15,19 As already mentioned, for
large objects and at values of qRg > 3 only internal
motions should be detectable. For linear chains with
strong hydrodynamic interactions one should find the
response of the Zimm type of relaxation.9,23 According
to theories by de Gennes7,8 and Akcasu9 these Zimm
modes give a q3 dependence of the first cumulant Γ and
a linear increase with q for Dapp(q)/Dz (Figure 4).
Evidently, this is not the case for the branched samples.
Systematic deviations occur in the asymptotic slope, and
the curves are shifted to larger qRg values. Instead of

Figure 2. Molar mass dependence of the coefficient Ch in eq
2: (O) determined from Rg and the slope of Dapp(q); (b)
according to eqs 5 and 6. The dashed lines correspond to the
A-〈B

C polycondensation model with branching probabilities of p
) 0.016 and p ) 0.024.11a,c

Dapp(q)/Dz = Pz(q)
-µ (5)

µ ) 3Ch (6)

P(q) ≡ Rθ

Rθ)0
) 1 - 1

3
Rg

2q2 + ... (7)

Figure 3. Plot of the normalized apparent diffusion coef-
ficients Dapp(q)/Dz as a function of (qRg)2 for all samples with
a detectable angular dependence. The Ch value is given here
by the initial slope.
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a q1.00 dependence, as expected for Gaussian segments,
significantly lower exponents between 0.85 and 0.8 are
found for the branched materials.10 Furthermore, the
shift to higher values of qRg is considerably larger for
the nonrandomly branched starch systems than for the
randomly branched polymers that possess much lower
branching densities. Interestingly, all data from the
various starch fractions form one common curve if
plotted against qRg. A similar plot can be made using
qRh as abscissa; a larger shift and a lower exponent are
obtained. (The split of the curves for Mw < 40 × 106
g/mol results from the difficulties of determining the
correct first cumulant with the ALV 3000 correlator.)
The shift of the curves in Figure 4 to larger qRg indicates
that the internal motions in branched systems are
detectable on a shorter length scale (larger q) than in
coils of flexible linear chains. The effect becomes more
pronounced as the branching density increases.
Further insight is obtained when the reduced first

cumulant Γ*(q) is examined, which is defined as14

(For linear chains Γ*(q) is just the prefactor of the q3
dependence of Γ in the asymptotic limit.9,15) It may be
noted that Γ*(q) is a dimensionless quantity. In con-
trast to Dapp(q)/Dz, the scaling of the function Γ*(q)
requires no polymer specific parameters for normaliza-
tion. The hydrodynamic correlation length êh is not
further specified.10,20 Figure 5 shows Γ*(q) as a function
of qRh. The theoretical curves for linear chains15 in a
good (ν ) 0.6) and a Θ-solvent (ν ) 0.5) are shown as
dashed and full lines, respectively. The experimentally
found asymptotes are indicated by the dotted lines. For
comparison also the curve for hard spheres is shown.
The experimental curves for the branched clusters fall
between the two limits of flexible coils and hard spheres.
This appears to be sensible since the branched clusters
can be recognized as architectures between these two
limits. The first cumulant Γ has the meaning of a
reciprocal time. A decrease of Γ*(q), at a fixed q value,
therefore means an increase in the relaxation time
(slowing down of segmental motions) for chain sections
of the same length. The slowing down observed with
the branched macromolecules is equivalent to a loss in
flexibility.

Another point of concern is the fact that all branched
materials do not approach a constant plateau for large
qRh values, as should be the case when a Zimm type
relaxation spectrum is present. Instead of approaching
the expected q independence, a continuous decrease
with a negative slope of approximately -0.2 is observed.
Such a behavior may have the following two reasons.10
(i) One is that the covered qRh region would be still

too low for the asymptote. For systems of a high
molecular polydispersity there is a considerable amount
of low molar masses present for which even at high
q-values the translational diffusion has a significant
effect.10 The translational diffusion contributes to the
first cumulant with a power of q2, and the corresponding
Γ*(q) thus decreases ∼q-1. Such an effect cannot be
ruled out for randomly branched materials with their
extremely large nonuniformity of size. For the starch
samples, however, the size distribution is not exceed-
ingly large.11c,24
The observed effect cannot be explained by a partial

draining, because that would shift the relaxation times
toward a Rouse type spectrum.22 A Rouse spectrum
results in a q4 dependence8,9 of the first cumulant or a
linear increase with q for Γ*. Instead, a weak decrease
is obtained.
(ii) The second explanation would indicate a change

of the relaxation spectrum due to branching. At this
point it may be recalled that all predictions made so far
are deduced from theories on linear chains. The ex-
perimental findings with linear chains support this
predicted behavior. It appears conceivable that branch-
ing introduces a much stronger perturbation to the
simple spring-bead model of linear chains than has
been anticipated. In fact, instead of being connected by
only two springs to neighbors, the ends of a segment in
a branched structure are actually connected by three
or four springs. These attachments will result in
strongly coupled motions for which the normal mode
analysis is still fully unknown.24 These additional
springs inevitably must have an effect on the mobil-
ity.25,26 Thus, we come to the conclusion that the Zimm
relaxation spectrum is altered by branching or cross-
linking. The effect is certainly small for long segments
between two branching points but may become signifi-
cant when the branching density is high.10
Semidilute Concentration Regime: Some Gen-

eral Remarks. In the past, much work has been done

Figure 4. Double logarithmic plot of the normalized diffusion
coefficients Dapp(q)/Dz against qRg for the starch samples
(lower curve) compared with those from randomly branched
anhydride cured epoxies (polyesters) (middle curve) and the
theoretically predicted ones for flexible linear chains in a good
(- - -) and Θ solvent (s) respectively.

Γ*(q) ≡ ( Γ
q3

)( η0
kT) ) (Dapp(q)

q )( η0
kT) ) 1

6πqêh(q)
(8)

Figure 5. Plot of Γ*(q) ) (Γ/q3)(η0/kT) ) [Dapp(q)]/q(η0/kT)
against qRh for randomly branched samples (polyesters,
polycyanates: data of the upper curve) and for the starch
samples (lower curve). The results are compared with those
predicted for random coils in good and Θ solvents indicated
by υ ) 0.6 and 0.5, respectively. The dotted lines correspond
to the experimentally observed limits.
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on the chain dynamics of individual linear chains. A
remarkable step forward in understanding was achieved
by scaling concepts of de Gennes,20 who applied these
ideas to semidilute solutions. His predictions were
quantified and cast into an analytic theory mainly by
Edwards.21 Both authors start with the assumption of
fully interpenetrating coils. The experimental findings
with linear chains strongly support this idea. For
branched macromolecules a full interpenetrating of coils
is not possible. The obstacles of branching points in
shells at the outside of the macromolecules will allow
only a partial interpenetration. Therefore, when the
actual concentration is much higher than the overlap
concentration, a much stronger influence of the inter-
particle interactions has to be expected. The effects of
the thermodynamic interaction have been already re-
ported and discussed in parts 2 and 3 of this series.11a,b
In addition, hydrodynamic interactions have to be taken
into account when the dynamics of the semidilute
solution are examined.
Both types of interaction (thermodynamic and hydro-

dynamic) have an incisive influence on the measurable
molecular parameters.27,28 In a naive manner a molar
mass or radius of gyration could be determined at a
finite concentration in the same way as is known for
infinite dilution. These so determined quantities are,
however, only apparent ones and contain contributions
arising from the osmotic force. In the following some
of these apparent quantities are repeatedly used. Most
of them were already defined and commented on in
paper 3.11c For convenience, we simply list in the
following the corresponding formulas without detailed
comments.
Overlap Concentration c*

Apparent Molar Mass Mapp(c)

Apparent Radius of Gyration Rg,app(c)

Apparent Particle Scattering Factor Papp(q,c)

where Rq,c and Rq)0,c are the Rayleigh ratios (scattering
intensities) at concentration c and scattering vector
values of q and q ) 0, respectively. A2 is the second
osmotic virial coefficient, and the other quantities have
the usual meaning.
Mutual (Collective) Diffusion CoefficientDc and

Hydrodynamic Correlation Length êh,(c).

Apparent Mutual Diffusion Coefficient. Similar
to infinite solution a first cumulant Γ(q,c) can be

measured at a given concentration c as a function of q
(scattering angle). For flexible objects the ratio Γ(q,c)/
q2 will depend on q. Therefore, this ratio cannot be a
true mutual diffusion coefficient Dc. Similar to eq 2 we
define an apparent mutual diffusion coefficient

Equations 9-14 demonstrate the immense complexity
of semidilute solutions: the naively defined apparent
quantities depend on both the concentration c and the
magnitude of the scattering vector q. The q dependence
is equivalent to a ruler that tests the internal structure.
Two further quantities come in when dealing with
dynamics. These are the hydrodynamic interaction and
the relaxation spectrum of segmental motions. Here the
question arises whether this complexity can be simpli-
fied and contracted to rather universal master curves.
The attempts in the following sections are directed to
such a standardization. We consider the exploration of
master curves as relevant, because deviations from a
universal master curve, as the concentration is in-
creased, will give clear indications for changes in the
internal structure due to the thermodynamic and hy-
drodynamic interactions. These effects will allow dis-
tinguishing associated objects from molecularly dis-
persed ones.28 The following treatment is confined to a
selected sample of high molar mass.
Semidilute Solutions: Scaling of the Angular

Dependent Dapp(q,c)/Dc. In static LS the angular
dependence of the apparent particle structure factor at
different concentrations could excellently be trans-
formed into one common master curve when qRapp(c)
was used as scaling parameter.11c The corresponding
apparent diffusion coefficients exhibit very similar
behavior to the static angular dependence. It was
interesting to check whether similar scaling would be
possible also for the dynamic LS measurements. Figure
6a shows the original experimental data of Dapp(c)
against q2 in a double logarithmic plot for the same
sample (LD18: Mw ) 43× 106 g/mol) and concentrations
as used for static LS measurements in Figure 9 of paper
3. Strikingly, the six curves in Figure 6a show a
common point of intersection (a range of concentrations
from 0.5c* to 5c* was covered).
This intersection point is at variance to the findings

with linear chains. For flexible linear chains all curves
from different concentrations merge into one common
line when the overlap concentration is exceeded. With
increasing concentration the mesh size of the transi-
tional network of interpenetrating chains becomes
smaller. The asymptotic concentration independence
observed with linear chains means that the local mo-
tions of the segments are not affected by the coil
interpenetration.
In the present case, however, the motion at large

q-values is slowed down when the concentration be-
comes larger than the overlap concentration due to
growing restrictions. The common point of intersection
indicates that the hindrance of segmental motion occurs
at a well-defined length that can be estimated to lie
between 1/qx ) 70 nm and êhx ) 87 nm where the latter
is obtained from the apparent diffusion coefficient at
that point, using the Stokes-Einstein relationship (the
suffix xmeans crossing). The radius of gyration of this
sample is Rg ) 180 nm. From these values we may
conclude that free interpenetration is possible only to a
depth of 79 ( 8 nm. For shorter mesh sizes the freedom

c* ) 1/(A2Mw) (9)

1
Mapp(c)

) 1
RT(∂π∂c) ) 1

Mw
[1 + 2A2Mwc + 3A3Mwc

2 + ...]

(10)

Rg,app(c) = Rg(Mapp(c)/Mw)
1/2 )

Rg[1 + 2A2Mwc + ...]-1/2 if c/c* < 1 (11a)

Rg,app(c) = Rg(A2Mwc)
-1 if c/c* > 1 (11b)

Rq,c

Rq)0,c
≡ Papp(q,c) ) Papp[qRg,app(c)] ) P(qRg) (12)

Dc ) kT
f(c)[ Mw

Mapp(c)] ≡ kT
6πη0êh(c)

(13)

Dapp(q,c) ≡ Γ(q,c)/q2 (14)
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of segmental motion becomes restricted. Apparently,
this is a consequence of hindered interpenetration due
to branching.
This conclusion is supported by Figure 7, which shows

the reduced cumulant Γ*(c,q) ≡ (Γ/q3)(η0/kT) plotted
against qêh(c) (eq 13). The curves are progressively
pushed down to lower values as the concentration is
increased. This again indicates a loss of mobility as has
been shown recently in a detailed analysis of data from
randomly branched10 and aggregated chains.28
Attempts of constructing a master curve by using

either Rg,app(c) or êh(c) as scaling parameters failed. A
master curve could be found, however, by normalizing
Dapp(q,c) with Dc and shifting the curves in Figure 6a
of the high concentrations to that of the lowest concen-
tration. (Dc is the mutual translational diffusion coef-

ficient at concentration c that is obtained by extrapo-
lation of Dapp(q,c) to zero scattering angle). The scaling
parameter is denoted here as Rh(c). Figure 6b shows
the final result that is compared with the result at zero
concentration when qRg (full line) and when qRh (dashed
line) is used (Rh is defined by eq 1).
The scaling radius Rh(c) has a much stronger con-

centration dependence than the hydrodynamic correla-
tion length êh(c) defined by eq 13 via Dc. Figure 8a
shows the result in which also the concentration de-
pendence ofMapp(c) is given. None of the three param-
eters displays power law behavior with regard to c.
However, good power law behavior is obtained when

plotting Mapp(c) against Rg,app(c) and êh(c) against
Rh(c). The curves are shown in Figure 8b and follow
the relationships

The two equations (15) and (16) represent experimen-
tal findings with one selected sample of high molar mass
Mw ) 43 × 106 g/mol. Another point is how these
relationships are to be interpreted. Here we are entirely
reliant on speculations since no theory on semidilute
solutions of branched macromolecules has been pro-
posed so far. The exponent in eq 15 could be interpreted
as a fractal dimension, which is approximately the same
as df ) 2.57 that was obtained for the molar mass

Figure 6. (a) Double logarithmic plot of the apparent mutual
diffusion coefficient Dapp(q,c) against q2 for six concentrations
of sample LD18 (Mw ) 43 × 106 g/mol, c* ) 2.8 g/L), c1 ) 1.3
g/L, c6 ) 12.7 g/L. (b) Same data transformed into one common
curve after normalization of Dapp(q,c) and shifting the curves
to the position c1. The shift factor is denoted as Rh(c). The
lines correspond to the curve at c ) 0 when scaled with Rg
(dashed line) or Rh (full line), respectively.

Figure 7. Plot of Γ*(q,c) against qêh for the six concentrations
of Figure 6a.

Figure 8. (a) Plot of Y(c1)/Y(c) against c, where Y(c) ) (b)
Mapp(c), (O) Rg,app

2 (c), (3) êh(c), (1) Rh
2(c), respectively. (b)

Double logarithmic plot of Mapp against Rg,app and êh against
Rh(c).

Mapp(c) ∝ [Rg,app(c)]
2.6 (15)

êh(c) ∝ [Rh(c)]
0.46 (16)
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dependence of the radius of gyration.11a The remark-
ably low exponent in eq 16 is difficult to interpret since,
so far, we have no clear idea on the physical meaning
of the radius Rh(c). One possible explanation would be
an effect of hydrodynamic screening, a conjecture that
appears to be supported by findings of the next section.
Shape Function (Scaling of g1(q,c,t)): Infinite

Dilution. Since the early work by de Gennes7 and
Dubois-Violette8 we know the approximate relationship
for the field TCF, g1(q,t), at large qRg for individual
chains at c ) 0. In a later study Akcasu and his
colleagues9 found that also the asymptotic TCF can be
written in a scaled form using t* ) 1/Γ(q) as scaling
parameter, where Γ(q) is the first cumulant of the TCF.
A plot of g1(q,t) against the logarithm of t/t* should
therefore result in a function that is independent of q.
The whole angular dependence is already included in
the first cumulant. Because of this property Akcasu et
al. called this function a shape function.7,9 In their
original paper they gave a list of numerically calculated
shape functions for chains without (Rouse case) and
with hydrodynamic interactions (Zimm case). Recent
experiments showed that also branched macromolecules
obeyed the relaxation spectrum of the Zimm type with
strong hydrodynamic interaction.10 Figure 9 demon-
strates that also for the branched amylopectin in starch
the condition of a shape function is fulfilled, if qRg > 2.
The experimental data are close to the curve for Zimm
relaxation modes. This statement holds valid for indi-
vidual macromolecules at infinite dilution.
Shape Function: Finite Concentrations. We now

turn to finite concentrations in a range up to about 5c*.
A plot of the time correlation function g1(q,t,c) against

Γ(q,c)t gave for each concentration a q-independent
curve, but now these curves gradually approached the
Rouse limit for chains without hydrodynamic interaction
when the concentration was increased. This is an
indication for hydrodynamic screening.
Although a particle with qRg ) 3 was chosen, the

condition qRapp > 2 is not fulfilled for the two highest
concentrations because, according to eq 11, the apparent
radius of gyration, Rapp, decreases with c. An influence
of the mutual translational diffusion coefficient, due to
the polydispersity, cannot entirely be ruled out for these
two concentrations. For very broad size distributions
the shape of time correlation function at zero scattering
angle is fully determined by the polydispersity and gives
a function that deviates from the Zimm curve in the
direction of the Rouse curve.10 However, the size
distribution of the sample is not exceptionally high,29
in particular the ratio Mz/Mw never exceeds a value of
3 (appendix of paper 311c) such that the influence of
polydispersity can be disregarded, at least for the lower
four concentrations in Figure 9.
Hydrodynamic screening was first observed in dy-

namic, spin-echo neutron scattering experiments by
Stühn et al.30 from polystyrene solutions in a concentra-
tion range of 10-60%. The findings with our sample
seem to be the first example where hydrodynamic
screening could be detected by dynamic LS. The reason
why this behavior could be observed with the much
lower concentrations of less than 10% probably results
from the high segment density in this nonrandomly
hyperbranched material. Further experiments have to
be done to confirm this conclusion.

Conclusions

An angular dependence of the apparent diffusion
coefficient Dapp(q) ≡ Γ/q2 is always observed when the
particles possess some internal flexibility. Light scat-
tering at large qRg probes short distances in the
macromolecule. Dynamic LS tests solely internal mo-
tions if qRg > 2. It has been argued that in this limit
allmacromolecules will exhibit the same behavior. This
argument is based on the fact that all macromolecules
are built up of linear chain sections. At short distances
(large q) mainly linear chain sections are seen. The
present investigation now revealed that branching has
an additional effect on the function Γ* ) (Γ/q3)(η0/kT)
and on the angular dependence of Γ and Dapp(q). The
first cumulant of the branched system increases only
with a power of q2.8 instead of q3 that was predicted and
found for linear flexible chains. Probably the branching
units influence the relaxation processes. The motions
of the branching points are coupled with the spring-bead
relaxations of a linear chain and could have a noticeable
effect on the dynamics of the short chains connecting
two branching units and could alter the common Zimm-
Rouse spectra.24 The effect will be noticeable only if the
branching density is high, i.e., the interconnecting
chains between two branching points are short.
Dynamic scaling of the angular dependence became

possible for both samples of different Mw at infinite
dilution and for solutions of starches at finite concentra-
tion up to about 5 times the overlap concentration c*.
The common static and dynamic correlation lengths are
not suitable scaling parameters, but scaling could be
achieved with a radius Rh(c). The successful scaling
answers the two questions posed in the introduction:
The measurements at different q and c, made with
different starch samples, can indeed be universally

Figure 9. Plot of the logarithmic TCF, g1(q,t), against the
scaled time t/t* ) Γ(q)t for all samples and scattering angles
obeying the condition qRg > 3 at c f 0.

Figure 10. Concentration dependence of the shape functions
from LD18 (Mw ) 43 × 106 g/mol. Lowest curve c1 ) 1.3 g/L,
highest curve c6 ) 12.7 g/L; c* ) 2.8 g/L, qRg > 2.
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described. The strongly different concentration depen-
dence of Rh(c) compared to that of Rg,app(c) and of êh(c)
remains, however, not sufficiently well understood.
The strongly q-dependent first cumulant of the field

TCF g1(q,c,t) can, for each concentration, be transformed
into a common shape function by choosing Γ(q,c)t as a
scaled delay time, t/t*, if qRg > 2. These shape
functions change gradually their behavior from the
Zimm to the Rouse type spectra, when the concentration
is increased beyond the overlap concentration. The
effect is interpreted as a result of hydrodynamic screen-
ing due to a high branching density.
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