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By finding the saddle point in the expression derived in Paper I (see reference 8) for the free energy of a 
nonuniform system, we have derived the properties of a critical nucleus in a two-component metastable 
fluid. 

At very low supersaturations, we find that the properties of the nucleus approach those predicted by the 
classical theory that assumes the nucleus to be homogeneous with an interfacial energy that does not vary 
with curvature. However, with increasing supersaturation, the following changes occur in the properties of 
the critical nucleus. (a) The work required for its formation becomes progressively less than that given by 
the classical theory, and approaches continuously to zero at the spinodal. (b) The interface with the ex­
terior phase becomes more diffuse until eventually no part of the nucleus is even approximately homogene­
ous. (c) The composition at the center of the nucleus approaches that of the exterior phase. (d) The radius 
and excess concentration in the nucleus at first decrease, then pass through a minimum and become infinite 
again at the spinodal. 

These properties are deduced without resort to any specific solution model. In addition, they are evalu­
ated for a regular solution to permit a quantitative comparison with the predictions of previous treatments. 

1. INTRODUCTION 

I N this paper we will be considering the stability of 
an incompressible homogeneous fluid that is un­

stable in the presence of a bulk quantity of a second, 
more stable phase. We will first have to determine 
whether the original phase is metastable; that is 
whether it is stable with respect to all possible in­
finitesimal changes in the absence of the second phase. 
If this is so, then there will be a nucleation barrier to 
the transformation to the more stable phase. It is our 
purpose to estimate the height of this barrier by calcu­
lating the minimum work required to place the original 
phase in a state from which it can thereafter transform 
spontaneously. 

In his classic treatment of stability of phases, Gibbsl 

separated into two categories the infinitesimal changes 
to which a metastable phase must be resistant. One is a 
change that is infinitesimal in degree but large in 
extent, as exemplified by a small composition fluctua­
tion spread over a large volume. If a phase is unstable 
with respect to such a fluctuation, then there is no 
barrier Bother than a diffusional oneq to a continuous 
transformation to the more stable phase. Gibbs formu­
lated the general conditions necessary for this type of 
instability. Specifically, it can be shown that a two­
component solution will transform spontaneously, if 
(a2Gjac2)r,p.<O, where G is the Gibbs free energy 
per mole of solution and c the composition. On a 
phase diagram, the boundary of the unstable region 
is defined by the locus of (a2Gjac2) 7·.P.=O and is 
usually called the spinodal. 

The second category of changes considered by Gibbs 
are those that are large in degree but small in extent, 
an example being that of an infinitesimal droplet of 

I J. W. Gibbs, Collected Works (Yale University Press, New 
Haven, Connecticut, 1948), Vol. 1, pp. 105-115, 252-258. 
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material with properties approaching those of the more 
stable phase. A metastable phase is always stable with 
respect to the formation of such a droplet provided it 
has a positive surface tension. Between the extremes 
of an infinitesimal droplet and a bulk quantity of the 
more stable phase, there is a critical-size droplet which 
is in unstable equilibrium with the exterior phase. With 
any further infinitesimal increase in size, such a droplet 
(or critical nucleus) can continue to grow without any 
further external intervention. 

Gibbs recognized that a critical nucleus might be so 
small that no part of it could be homogeneous. Never­
theless, because of his definition of surface tension, he 
was able to develop a self-consistent formulation for 
the properties of a critical nucleus as if it were ho­
mogeneous up to a sharp boundary with the exterior 
phase. The reason why he resorted to this artificial 
model was to allow application of thermodynamic 
principles that had been developed for homogeneous 
phases. In particular, the requirement that the chemical 
potential of each component be constant throughout a 
system in stable or unstable equilibrium uniquely 
determines the composition and pressure of a homoge­
neous critical nucleus. The difference in pressure, !:J.P, 
between the nucleus and the exterior phase is also 
equal to the decrease in Helmholtz free energy ac­
companying the formation of a unit volume of bulk 
nucleus material, at the pressure and composition at 
which it will be in equilibrium with the exterior phase. 
(It should be noted that the change in the Gibbs free 
energy is zero under these conditions.) 

In order to preserve hydrostatic equilibrium, the 
radius r of the critical nucleus must be such that 

!:J.P=2u/r, (1.1) 

where U IS a suitably defined surface tension. If the 
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radius of the droplet is greater than r, the pressure 
exerted by the surface is insufficient to prevent the 
growth of the droplet. On the other hand, a droplet 
having a radius less than r will collapse because the 
pressure exerted by the surface is then greater than t1P. 

Having fixed the size, composition, and pressure of 
the critical nucleus, Gibbs2 obtained the following 
expressions for the minimum work required for its 
formation: 

11'= 41l'r20-- (47r/3)r3t1P, 

W= (161l'/3) [0-3/(t1P) 2], 

= (21l'/3)r3t1P, 

= (41l'/3) r20-. 

(1.2) 

(1.3) 

(1.4) 

(1.5) 

The last three forms are obtained from Eq. (1.2) by 
the successive elimination of r, 0-, and t1P by means 
of Eq. (1.1). 

In what we shall hereafter refer to as the "classical" 
treatment of nucleation, these equations have been 
used with 0- set equal to the tension of a flat interface 
between the two coexisting stable phases and a t1P 
corresponding to the increase in pressure required to 
maintain bulk nucleus material in equilibrium with the 
exterior phase. Such a procedure, however, is strictly 
correct only for the limiting case when t1P approaches 
hero. For finite values of t1P, the Eqs. (1.1)-(1.5) 
provide, in effect, nothing more than a definition of r 
and 0- in terms of t1P and W. Gibbs was well aware of 
this limitation, but he was not particularly concerned 
by it, since he believed that as long as W was positive, 
a phase could remain indefinitely in a metastable state. 
He was interested, therefore, only in establishing the 
sign of W, and for this purpose his treatment was 
sufficient. 

However, it was subsequently recognized that a 
critical nucleus can be formed by thermal fluctuations 
if W is less than, say, 60 kT. Thus to predict the 
actual limit of metastability, an absolute evaluation of 
W is required. The previous work on this problem has 
been reviewed by others.3,i For the present we need to 
note only that most previous treatments have been 
based on the classical theory referred to earlier, or on a 
modification in which a correction is made for the 
variation of surface tension with either compositionS or 
curvature.6 In most instances (see Discussion) these 
treatments predict the persistence of a barrier to trans­
formation within the spinodal, a result which is con­
trary to that reached by Gibbs. However, others (e.g., 
Borelius7) have taken the view that the actual limit of 
stability is coincident with the spinodal. 

2 Reference 1, p. 254. 
3 J. H. Hollomon and D. Turnbull, Prog. in Metal Phys. 4, 333 

(1953). 
4 R. S. Bradley, Quart. Revs. (London) 5,315 (1951). 
c. R. Becker, Ann. phys. 32,128 (1938). 
6 F. P. Buff and J. G. Kirkwood, J. Chern. Phys.18, 991 (1950). 
7 G. Borelius, Arkiv. Mat. Astron. Fys. A32, 1 (1945). 

Our own approach is based on an expression pre­
viously derived8 for the free energy of a nonuniform 
system. This expression permits the properties of a 
critical nucleus to be calculated without any assump­
tion about its homogeneity. In addition, it is unneces­
sary to divide the energy of a nucleus into a surface 
and volume term. 

In order to simplify the thermodynamics, we have 
chosen to limit the present treatment to a system in 
which the partial molar volumes are independent of 
composition and pressure. However, this restriction is 
not necessary and we intend to give the more general 
treatment in a subsequent paper. In anticipation of this 
later work, it may be stated that present results will 
remain satisfactory approximations for many practical 
systems. 

We shall be concerned only with the thermodynamics 
of nucleation and not with its application to kinetic 
theory. In the next two sections we shall develop the 
general properties of the critical' nucleus, postponing 
to Sec. 4 the introduction of a specific solution model. 

2. DETERMINATION OF SADDLE POINT 

In an earlier paper,s to which we shall hereafter refer 
as paper I, it was demonstrated that the free energy 
of a small element of a solution having a spatial varia­
tion in composition can be represented by the sum of 
two terms; one being the free energy that the element 
would have if surrounded by material of the same 
composition as itself, and the other, a term which to a 
first approximation is proportional to the square of the 
composition gradient. Hart9 has subsequently developed 
an alternative treatment of inhomogeneous systems. 
In a comparison of the two treatments, Cahn10 demon­
strated that they lead to identical results. Apart from a 
slight change in notation, * we shall, therefore, retain 
the formulation of paper I. 

For the Helmholtz free energy of a two-component 
system which is both incompressible and isotropic we 
have 

F= J [j'(c) +K(\7c)~JdV, (2.1) 
v 

where f' (c) is the Helmholtz free energy per unit 
volume of a homogeneous system of composition c, 
and K(\7C)2 is a gradient energy which is definedt as 

8 J. W. Cahn and J. E. Hilliard, J. Chern. Phys. 28, 258 (1958). 
9 E. W. Hart, Phys. Rev. 113,412 (1959). 
10 J. W. Cahn, J. Chern. Phys. 30, 1121 (1959). 
* In paper I, e.j and other quantities were defined in terms of 

a change per atom. However, starting with paper II, it has been 
found to be more convenient to use quantIties based on a unit 
volume. In addition, a prime instead of a subscript zero is now 
being employed to denote the value of a quantity in the absence 
of a gradient. 

t This particular definition was introduced in Paper II to 
facilitate comparison with the treatment of Hart.9 It auto­
matically includes all the gradient-energy terms in the expansion 
given in paper 1. 
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t' 
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(b) 

I' 
COMPOSITION, C 

FIG. 1. (a) Helmholtz 
free energy, l' , of a 
homogeneous two-com­
ponent fluid. Nt is the 
difference between the 
curve l' and the line 
tangent to it at co. (b) 
Ill' for co<c,. (c) Ill' 
for co>c,. (co, initial 
composition of fluid; C" 

spinodal; cm, composi­
tion of classical nucleus; 
Ca and c~, compositions 
of coexisting stable 
phases.) 

the difference between j' and the actual free-energy 
density. For small gradients, K is approximately inde­
pendent of the gradient and is givent by 

in which the prime denotes that the derivatives are to 
be evaluated for the limit of small V'c and V'2c. 

Equation (2.1) holds true for any composition 
fluctuation. It has many of the properties to be ex­
pected in a nucleation treatment. For small composi­
tion fluctuations [c<ca in Fig. 1 (a)] which keep the 
average composition of a metastable system constant, 
F increases irrespective of the spatial extent of the 
fluctuation. But with increasing difference in composi­
tion between the exterior phase and the fluctuation, the 
integrated value of j I eventually decreases faster than 
the gradient-energy contribution increases. When this 
happens, there is no further impediment to a con­
tinuous growth of the fluctuation. 

There are infinitely many paths by which an initially 
unstable fluctuation can grow into a stable one, but we 
are interested only in those paths going over the lowest 
free-energy barrier. The top of such a barrier is a saddle 
point and it is here that a fluctuation becomes a critical 
nucleus. At the saddle point the system is in equi­
librium (although an unstable one). Consequently, for 
a closed system at constant temperature and volume, 
the Helmholtz free energy must be stationary with 
respect to a change in composition at any point in the 
system. The form of the critical nucleus is thus defined 
by the functional dependence of composition on posi­
tion that yields an extremal of Eq. (2.1) subject to the 
condition that the average composition remain con-

~ The factor of (l) in the second term of Eq. (2.2) was in­
advertently omitted in the definition given in paper I. 

stant, or 

f (c-co)dV=O, 
v 

(2.3) 

where Co is both the initial and average composition. 
Application of the Euler equation to Eq. (2.1) and 
neglecting the higher order gradient terms, yields as the 
requirement for an extremal in F, 

where A is a Lagrangian multiplier introduced by the 
subsidiary condition Eq. (2.3). If we assume, as did 
Gibbs,! that the system is sufficiently large for there to 
be a negligible change§ in the composition of the ex­
terior phase during nucleation, then A is readily identi­
fied with - (aj 'jac)e=ro, so that the Euler equation 
becomes 

The solution to this equation, subject to the necessary 
boundary conditions, describes the spatial composi­
tional variation in a critical nucleus. 

We will now consider the work, W, required to form a 
critical nucleus. For a closed system at constant tem­
perature and volume, W is given by the change in F 
accompanying the formation of a critical nucleus in an 
initially homogeneous solution. Thus 

IV= f [j'(e)-f'(co)+K(V'c)2]dV, (2.5) 
v 

where c must satisfy the Euler equation, (2.4). It is con­
venient to express the first two terms of the integrand 
in terms of a quantity aj I, defined, as shown in Fig. 
l(a), by 

D.j'=j'(C) -f'(eo) - (c-co) (aj'jac)r=eo' (2.6) 

By substituting Eq. (2.6) in (2.4) and (2.5), and ap­
plying Eq. (2.3), we obtain 

IV= f [aj'+K(V'c)2]dV, 
v 

(2.7) 

and 

The essential difference between these equations and 
those of the classical theory is that no assumption is 
made here about the homogeneity of the nucleus. 

For an isotropic system, or one having cubic sym­
metry (and these are the only cases that we shall be 
considering), the critical nucleus will be spherically 
symmetric. Thus Eqs. (2.7) and (2.8) can be re-

§ It will be shown in Paper IV that the error in W introduced 
by this assumption is of the order of the reciprocal of the total 
volume of the system. 
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written in terms of the radius, r from the center of the nucleus to infinity we obtain 

(2.9) f'[K(d2c/dr2) (dc/dr) + (2K/r) (dc/drr 

and 

= (aLlj'/ac). (2.10) 

To be physically acceptable, solutions of Eq. (2.10) 
have to satisfy the following boundary conditions: 

dc/dr=O at r=O and 
and 

r= 00 , (2.11) 

+HdK/dc) (dc/dr)3]dr 

=t[Llj'(r= 00) -Llf '(r=O)]. (3.1) 

But, by virtue of boundary conditions Eqs. (2.11) 
and (2.12), 

= [(K/2) (dc/dr) 2]0""= 0, 
c= Co at r= 00. (2.12) and 

For a one-dimensional composition variation across a 
flat interface, r= OCJ and the (2/r) (dc/dr) term in 
Eq. (2.10) vanishes. It is then possible, as shown in 
Paper I, to integrate this equation, thereby obtaining 
an expression for the interfacial free energy that 
contains only Llf' and K. However, for a nucleus, it is 
necessary first to solve Eq. (2.10) for the composition 
variation c(r) which then can be substituted in Eq. 
(2.9) to evaluate W. When K is independent of com­
position, the computation is facilitated by expressing 
Eq. (2.9) in the form 

W=4Jr fDILlj'-[(c-co)/2](aLlj'/ac) Ir2dr. (2.13) 

This transformation is accomplished by use of the 
divergence theorem in conjunction with Eqs. (2.7), 
(2.8), and (2.11). 

3. GENERAL PROPERTIES OF THE CRITICAL NUCLEUS 

In this section we shall demonstrate that certain 
properties of the critical nucleus can be deduced without 
introducing any specific solution model for the evalua­
tion of Llj' . We shall first consider those properties 
which are determined by the form of the Euler equa­
tion, and then examine the functional dependence of W 
for three limiting cases, in two of which Llj' can be 
expanded in a power series. 

A. Properties Determined by the Form of the Euler 
Equation 

Property I. Llj' of the Material at the Center of the Nucleus 
is Negative 

This is more restrictive than the obvious condition 
that (aLlj'/ac)r=O be negative.7 The material at the 
center of the nucleus not only has to have reached 
the composition Ca (Fig. 1) at which its free energy 
decreases with increasing c, but it must already be 
stable (i.e., c> Cb) with respect to the matrix material. 

Prooj.-Integrating Eq. (2.10) with respect to c 

Llf'(r=oo)=O. 

Hence Eq. (3.1) reduces to 

1a
CO

(2n:/r) (dcldr)2dr= -~Llj'(r=O); (3.2) 

thus, since the integrand is always positive, 

Llj'(r=O) <0. 

Property II. At low supersaturation, i.e., as Co±C" the 
critical nucleus resembles that of the classical theory in 
the following respects. 

(a) The composition, Cn, at the center of the nucleus 
approaches the equilibrium composition CfJ. 

Proof.-From property I, we know that 

Hence 

(b) The specific free energy associated with the interface 
approaches that of a flat interface. 

Proof.-Changing the variable of integration in Eq. 
(3.2) from r to c, we obtain 

j'°(2Kl r) (dcldr)dc= -tLlf '(cn)->O, as Co->C". (3.3) 
en 

Since (2/ r) (dcl dr) is everywhere negative, it must 
also approach zero and therefore can be neglected in 
comparison with the other term which remains finite 
in Eq. (2.10). Thus as Co->C", this equation reduces to 

which can be integrated to give 

(3.4) 

where x is a linear distance. In Paper I, it was shown 
that Eq. (3.4) describes the composition variation 
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FIG. 2. Normalized composition profiles of the critical nucleus 
in the region T", Te. 

across a flat interface having a specific free energy IT, 

given by 

1+<:0 
1T=2 .....ro K(dc/dx)2dx, 

r+co 

=2L" Aj'dx. (3.5) 

(c) The radius of the nucleus approaches infinity_ 
Prooj.-Applying the mean value theorem to Eq. 

(3.2) and comparing the result with Eq. (3.5) we find 

T= -21T/ D.f'(r=O), 

where T is a mean radius of the nucleus surface. But, 
according to Eq. (3.3), Aj'(r=O)=O as Co---.?C,., there­
fore T---.? tX) as Co-->C". 

The preceding equation for f can be considered 
analogous to the Kelvin relationship Eq. (1.1) since, 
if the nucleus is homogeneous in the vicinity of r= 0, 
then -D.j'(r=O) is the pressure difference between 
the exterior phase and the center of the nucleus. 

B. Properties near the Critical Temperature 

In Eq. (2.20) of Paper I, it was shown that near the 
critical temperature To, the free energy f' of a ho­
mogeneous solution could be expanded about the 
critical composition Ce to give 

f'(X)-f'(X,,) - (X-X,,) (aj'/axh=xa 

where 
/'= cay' /a(4

) crit./4 !, 

X = (c-cc) /2 (c,,-cc) , 

(3.7) 

(3.8) 

and c" is the equilibrium composition. It also was 
shown that e,,- is related to T by 

4'Y[ (c,,-C,,)2]Tr-vT,,= (T,,- T) (a'l' jaTac2) or it.. (3.9) 

S.ubstitution of Eq. (3.6) in Eg. (2.6) gives 

Aj' =/,(c,,-cc)4[(1-4X2)L (1-4Xo2)2 

+ 16 (4XoLXo) (Xu-X)], (3.10) 

and hence, by differentiation, 

aD.f 'jdc= j(c,,-cc)-l(oAj 'laX) 

=8'Y(C,,-cc)3[(4XLX) - (4X03_XO)]. (3.11) 

Providing that aKjac remains finite at the critical point, 
or its square is less than order [1/ (cc- c,,) J2 then, 
sufficiently close to the critical point, the term in 
OK/aC in the Euler equation [Eq. (2.10)] can be neglected. 
Furthermore, p can be assumed to have a constant 
value K}. 

To reduce the Euler equation to a dimensionless 
form, it is convenient to introduce the following param­
eter in place of the radial distance, r, 

(3.12) 

Changing the variables in Eq. (2.10) by means of 
Eqs. (3.8), (3.11), and (3.12), we obtain for the Euler 
equation 
(d2X/dt2) + (2/t) (dX/dt) 

-[(4XS-X)-(4X03_XO)]=0. (3.13) 

After substituting Eqs. (3.10), (3.11), and (3.12) in 
Eg. (2.13), we obtain for the work, We, of nucleation 
in the vicinity of the critical point 

where Ie is the value of the integral 

J,,= {o(Xo+X) (Xo-X)3[2dt, ( 3.15) 

where X must satisfy Eq. (3.13) and is subjected to the 
boundary conditions Eqs. (2.11) and (2.12). An analog 
computer was used in order to obtain solutions of Eq. 
(3.13) for several values of Xo between the equilibrium 
composition X a=-! and the spinodal X.=--r\t. 
(The latter value is obtained by equating the deriva­
tive of Eq. (3.11) to zero and solving for X.) It will 
be seen from the solutions shown in Fig. 2, that as the 
composition of the initial phase approaches the spinodal, 
the interface of the nucleus becomes progressively more 
diffuse and, at the same time, the excess composition 
at the center of the nucleus approaches zero. The 
corresponding variation in Ie [as computed from Eq. 
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(3.15) J is depicted in Fig. 3. The integral (and therefore 
W) is infinite at the equilibrium composition, and zero 
at the spinodal. It is apparent from a comparison of 
Eqs. (3.9) and (3.14) that for a constant value of 
Xo, We is proportional to (Te- T)l. We shall now 
explore in more detail the properties of the nucleus at 
these two limits. 

C. Properties Near the Spinodal Composition 

When Co"-'C., we can expand Ai' in a Taylor's series 
about Co and thus obtain an expression that is valid 
at all temperatures. The first and second terms in such 
an expansion vanish because both Af'(co) and 
(a!lf'/ac)_co are O. In addition, we can use the prop­
erty (a2Af'/ac2)=c.=0 to eliminate the term in 
(a2Af' jac2) <=co' Neglecting the derivatives higher than 
the third, the remaining terms give 

Af' (co",c.)=~[3(c.-co) (c-co)2- (c-co)3J, (3.16) 

in which 

( 3.17) 

Provided that K can be expanded about Co, It IS 
easily shown that for Co sufficiently close to c. the term 
in aKjac in Eq. (2.10) can be neglected, and K can be 
assumed to have a constant value K •• 

Introducing the parameters 

and 
Y= (c-co)/(c.-co), 

R= [Hcs-CO)/K.]!r, 

(3.18 ) 

(3.19) 

we obtain from Eqs. (2.13) and (3.16) for the work, 
TV8 , near the spinodal 

(3.20) 

in which I. is the value of the dimensionless integral 

Is=lfo PR2dR, ( 3.21) 

Ie 

O.~--______ ~ ______ ~~k-__ 

J -.3 Xs 
Xo 

FIG. 3. (a) Variation with X 0 of the value of the integral I, 
defined by Eq. (3.15). (b) I for a classical nucleus. 

10 

>- 5 b 

------ L ..... 

JiIG. 4. (a) Normalized composition profile of critical nucleus 
near the spinodal. (b) Profile drawn to the same scale as (a) in 
order to indicate change when (co-c,) is reduced by a factor of!. 

for the solution of the Euler equation 

(d2YjdR2) + (2/ R) (dY/dR) -H2Y - P) =0. (3.22) 

The analog computer was again used to solve this 
equation. The normalized profile (Fig. 4) of the nucleus 
is independent of the initial composition Co, providing 
of course, that Co is sufficiently close to c. to justify our 
assumptions. 

The value~ of I. was estimated by a variational 
method to be 15.7; whereas, a numerical integration 
of Eq. (3.21) using the Y versus R curve shown in 
Fig. 4 yielded 16.5. Since the variational method should 
give a value higher than the true one, we conclude 
that the analog solution is slightly in error. There­
fore, we shall use the variational estimate of 1.= 15.7 
which, when substituted in Eq. (3.20), gives 

TV.= 197~-iK.I(c.-co)!. (3.23) 

For the composition at the center of the nucleus, we 
have from Fig. 4 that the value of Y at the center is 
8.1 and hence, by Eq. (3.18) 

(c,,-Co) =8.1(c.-co), (3.24) 

where Cn is the composition at the center of the nucleus. 
Also, if we denote by r! the radius at which the com­
position is Hcn-co) , then by Eq. (3.19) 

r1= [K/Hc.-co) JiRh 

=0.73[K/O(C.-co)-i. (3.25) 

Thus, somewhat suprisingly, even though the nucleus 
increases in extent and in the excess material it con­
tains, the work of formation nevertheless goes to zero. 

D. Properties Near the Equilibrium Composition 

We shall utilize the general result (proved in Sec. 
3A) that as Co approaches the equilibrium composition 
ca , the properties of the critical nucleus approach 

~ This was obtained using the trial function Y =" sech (R/f3) 
in which a and f3 are constants whose values are chosen to min­
imize Eq. (2.9). Two other trial function~ Y =a exp[ - (R/f3)2] 
and Y=a (R/m/[(1+R2/{:l") sinh(R/f3)J gave values for I, of 
16.1 and 16.7, respectively. 
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those predicted by the classical theory. In particular, 
the radius of the nucleus is large compared with the 
thickness of its interface, and its composition is close to 
the equilibrium one. Setting fj.P in Eq. (1.3) equal to 
the change in Helmholtz free energy fj.f N' as defined in 
Fig. 1, we obtain 

(3.26) 

in which we can now identify rr with the tension between 
the two phases in equilibrium across a flat interface. 
It is evident from Fig. l(a) that 

fj.fN' '" - (Cfj-ca) (iMf' /iJc)c=co, 

in which 
",1/;(Cfj-Ca ) (co-ca), 

1/;= (iJ Zfj.J'/iJc2)c=ca· 

Therefore, we can rewrite Eq. (3.26) 

(3.27) 

(3.28) 

W Cl= (1671'/3) [1/;(CrCa)]-2rr3(co-ca)-2. (3.29) 

Similarly, for the radius we have from Eq. (1.1) 

(3.30) 

Thus, as Co approaches Ca, W goes to infinity as 
(co-Ca)-2, and the radius goes to infinity as (cO-Ca)-l. 

E. Summary of General Treatment 

Our purpose in this section has been to establish the 
general properties of a critical nucleus. We have found 
that certain of the properties can be deduced merely 
from the form of the Euler equation. But, for a more 
detailed description, it has been necessary to obtain 
normalized solutions to this equation for the three 
limiting cases, in two of which fj.f' can be expressed as 
an expansion. We have found that the classical nuclea­
tion theory represents one of these limiting cases in 
which Co approaches the equilibrium composition. 
However, with increasing supersaturation, the proper­
ties of the nucleus become progressively less classical 
and eventually, as the spinodal composition is reached, 
all resemblance to a classical nucleus is lost. 

4. NUCLEATION IN A REGULAR SOLUTION 

A. Evaluation of the Parameters 

In order to establish the absolute value of Wand its 
composition dependence in the regions not covered 
by the foregoing limiting cases, it is necessary to intro­
duce a specific function for fj.f '. In principle, any solu­
tion model yielding aN' function of the required 
form in the metastable and unstable regions could be 
used. Alternatively, the function could be derived from 
an extrapolation of experimentally determined free 
energies into the two-phase region. 

For the purpose of illustrating the results of the 
present treatment, we shall use the regular solution 
model, which has been a choice of other authors because 
of its simplicity. We shall denote by the subscript R 

those properties which refer specifically to a regular 
solution. It was shown in Paper I [Eq. (3.12) ] that 
the gradient-energy coefficient KR for a regular solu­
tion is independent of temperature and composition 
and is given by 

( 4.1) 

in which the number of molecules per unit volume, 
N v, has been introduced because of the change adopted 
in the present paper of defining quantities in terms of a 
unit volume. The parameter A is a rms interaction 
distance. Because of its sensitivity to the long-range 
interatomic forces, it is best estimated for a particular 
system from experimental measurements of e.g., the 
interfacial free energy. However in the calculations to be 
presented, we shall use the following theoretical value 
computed in Paper I for a Lennard-Jones 6-12 po­
tential: 

(4.2) 

in which ro is the intermolecular distance. 
We shall also utilize the following well known 

properties of a regular solution: 

fR'/N v=wc(l-c)+kT[clnc+(1-c) In(l-c)], (4.3) 

where w is an interaction energy which, for a system 
with a miscibility gap, is positive and is related to the 
critical temperature by 

(4.4) 
In addition, 

Ce=t, (4.5) 

c8 (1-c.)=iT/Te, (4.6) 

In[ca/(1-ca) J= 2(2ca-l) Te/ T , (4.7) 
and 

Ca = (l-cll)' (4.8) 

The substitution of Eqs. (4.3) and (4.4) in Eq. (2.6) 
gives 

NR'/N v= - kTeI2(c-co)2- (T/Te) [c In (c/co) 

+(1-c) In(l-c)/(I-co)]I. (4.9) 

We can also evaluate the parameters defined by Eqs. 
(3.7), (3.17), and (3.28) 

and 

(R=4N vkTc/3, (4.10) 

~R=N v(1- 2c.)kT /{6[c.(1-c.) J2\, (4.11) 

=N v(8kTc/3) (Tc/T)[I- (T/Te) J!, (4.12) 

(4.13) 

Also, from Eqs. (3.9), (4.3), and (4.10), we obtain 

( 4.14) 
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Consider next the coefficients of W for the three 
limiting cases Co"-'C", Co"'C., and T"-'Tc. With the ap­
propriate substitutions in Eq. (3.14) we obtain 

Wc= 12l1'N yX3[2(Tc- T)/TcJ!IckTc, 

"'200[( Tc- T) /TcJ!IckTc. ( 4.15) 

Similarly, for Eq. (3.23) we have, 

Ws"-'460(T/Tc)![(Tc- T)/TcJ-1/4kTc(c.-co)!. (4.16) 

For the limiting case Co"'C", it is not worthwhile to 
express the coefficients appearing in Eq. (3.29) as a 
function of temperature, because of the complicated 
dependence of IIR, the interfacial free energy of a flat 
interface in a regular solution. Instead, a value of 
IIR for a particular temperature can be evaluated from 
Fig. 3 and Eq. (3.19) of Paper I; it can then be used in 
conjunction with Eqs. (3.26) and (3.27) to deter­
mine W 81. 

B. Properties of the Critical Nucleus at 
T/Tc = 0.8656 

The Euler equation, Eq. (2.10), was solved for a 
regular solution in which the equilibrium compositions 
of the two phases are 0.2 and 0.8. These correspond to a 
reduced temperature of T/Tc=0.8656··· and a 
spinodal composition of c.=0.3167···. The profiles 
of nuclei obtained on the analog computer at Co values 
of 0.225, 0.250, 0.275, and 0.300 were similar in form 
to the sequence depicted in Fig. 2. 

We shall now consider the various properties of the 
critical nucleus as a function of Co, and compare them 
where appropriate with the predictions of previous 

160 , 
, 
\ 

140 V ld ) . 
Ie) 

120 \ 
\ 

100 

80 
';;; 

...... 
~ 

60 

40 

" . ........... 
20 t, 

0 1 
0.32 

INITIAL COMPOSITION, e. 

FIG. 5. Variation of W /kt with Co in a regular solution at 
TjTc=0.8656··· and (>-'/ro) = (llj7)t according to (a) present 
treatment; (b) limiting case of Co"-'Ca ; (c) classical theory; (d) 
theory of Becker; and (e) limiting case of Co"-'C,. 

40 

35 

30 

25 

~ 

" > 
z 20 
~ \ 

\ 

!'! 15 
\ - , , , 

' ___ /lbl 
10 

'-, 
---~----------. 

C. 

t 
o 0.20 0.22 0.24 

INITIAL COMPOSITION, Co 

FIG. 6. Variation with Co in a regular solution at T/Tc= 
0.8656· .. and (>-./ro) = (11/7)t of the radius of the critical nucleus 
according to (a) present treatment, and (b) classical theory. 

theories. In Fig. 5, the following curves are drawn for 
the variation of W with co: 

(a) Computed by means of Eq. (2.13) from the 
analog solutions of Eq. (2.10). 

(b) Computed from Eq. (3.29) for the limiting case 
Co"-'C" with IIR= 0.145N y2/3kTc, this being the inter­
facial energy calculated in paper I for a fiat interface 
between the equilibrium phases of a regular solution 
at T/Tc=0.8656··· for a value of X given by Eq: (4.2). 

(c) Computed from Eq. (3.26) for a classical nucleus 
with a value of !::..fN' at the composition for which the 
nucleus would be in equilibrium with the exterior phase. 
The value used for IIR was that given in (b). 

(d) Computed from Becker's modification6 of the 
classical theory in which it is assumed that the nucleus 
is composed of homogeneous material with the com­
position CtJ of the final equilibrium phase. The value 
used for II is 0.529N y2/3(CtJ-CO)2kTC) which is calculated 
on the basis of nearest-neighbor interactions only. 

(e) Computed from Eq. (4.16) for the limiting case 
Co"-'C •• 

It will be noted that the W given by the present treat­
ment [curve (a) ] is always less than that for a classical 
nucleus, and in addition it continuously approaches a 
zero value at the spinodal. Curve (d) for Becker's 
treatment is not strictly comparable with the other 
curves, since it was computed on the basis of nearest­
neighbor interactions only. If the same assumption were 
to be made in our treatment, the calculated value of 
W would have been reduced by approximately a factor 
of ten. 

The radius of the critical nucleus at which the 
composition is (cn - co) /2 is plotted in Fig. 6. Near the 
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FIG. 7. Variation with Co in a regular solution at T/Tc= 
0.8656··· and (Ajro) = (11/7)' of the composition difference be­
tween the center of the nucleus and the external phase according 
to (a) present treatment, and (b) classical theory. 

equilibrium composition, the radius is slightly less 
than that shown by curve (b) for a classical nucleus. 
But with increasing Co, the radius eventually passes 
through a minimum and approaches infinity at the 
spinodal. A hypothetical homogeneous nucleus having 
the composition of a classical nucleus and the excess 
concentration of the actual nucleus would, in the 
vicinity of Ca , have a radius larger than 'l, but less 
than that of the classical nucleus. 

The composition difference, (cn - co), between the 
center of the nucleus and the exterior phase (Fig. 7) 
decreases more rapidly than for a classical nucleus and 
approaches linearly to zero at the spinodal in ac­
cordance with Eq. (3.24). 

C. Variation of Properties with Temperature 

For a given ratio of (co-ca)/(CIJ-ca), the radius of 
the critical nucleus increases and W decreases with 
increasing temperature. The nucleus also becomes more 
classical in shape. 

For the purpose of indicating the supersaturation 
required for an observable nucleation rate, the locus 
of W = 60kT is drawn on the phase diagram in Fig. 8. It 
will be noted that the undercooling required to initiate 
the transformation goes to zero at the critical composi­
tion. This result is in agreement with the experimental 
data of Orianill for the CC4-C7F14 system. Also 
included in Fig. 8, is the W = 60k T locus calculated 
from Becker's theory.5 According to this curve, a finite 
degree of undercooling is always required for nuclea­
tion, even at the critical composition. In comparing 
curves (a) and (b) it should be again borne in mind that 
with nearest-neighbor interactions only curve (a) 
would have been displaced to such an extent that it 
would have been nearly coincident with the phase 
boundary. 

11 R. A. Oriani, J. Chern. Phys. 25, 186 (1956). 

In conclusion, it must be emphasized that all the 
evaluations made in this section have been based on 
calculated value for K (or AI '0) given by Eqs. (4.1) 
and (4.2). Therefore, the evaluations must be regarded 
only as approximations, even if the system is a perfect 
regular solution. 

S. DISCUSSION AND SUMMARY 

In the present treatment, we have determined the 
free energy of formation and other properties of a 
critical nucleus by treating it as a fluctuation which is in 
unstable equilibrium with the exterior phase. We have 
demonstrated that the general properties of such a 
nucleus in a two-component incompressible fluid can be 
deduced without resort to any specific solution model. 
By way of a summary, we shall compare these proper­
ties with those of the classical nucleus as the exterior 
phase changes from the equilibrium to the spinodal 
composition or as the supersaturation increases. 

At low supersaturations, the ratio of the W's, radii, 
and other properties of the two nuclei approach unity. 
Thus, so long as we consider only the relative error, 
the equations of Gibbs cited in the introduction provide 
an increasingly accurate description of the nucleus as 
the exterior phase approaches the equilibrium com­
position. 

As the supersaturation increases, the nucleus begins 
to differ from the classical nucleus in the following 
respects: (a) W becomes proportionally less; (b) the 
pressure and composition at the center of the nucleus 
are less than those of a classical nucleus; (c) at first, the 
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FIG. 8. Locus of W = 60 k T for a regular solution according to 
(a) present treatment with ('A/ro) = (11/7)', and (b) treatment 
of Becker (for nearest-neighbor mode 1). Curve (c) is the spi­
nodal, and (d) the phase boundary. 
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radius remains less than that of a classical nucleus, but 
eventually it passes through a minimum and thereafter 
increases; and (d) the thickness of the interface is 
greater than that of a flat interface between the equi­
librium phases. 

With still higher super saturations near the spinodal, 
all resemblance to a classical nucleus is lost. In par­
ticular: (a) the free energy approaches zero; (b) the 
composition at the center approaches co; (c) the radius 
becomes infinite; and (d) no part of the nucleus is 
even approximately homogeneous. The critical nucleus 
therefore can be regarded as a composition fluctuation 
which is small in degree but large in extent. 

We shall now consider some of these properties in 
greater detail. In the first place, it is apparent that the 
classical theory provides the simplest means of calcu­
lating W. It is, therefore, very desirable to establish 
the conditions under which it can be satisfactorily 
applied to experimental data. From kinetic theory, we 
know that homogeneous nucleation will occur at a 
perceptible rate when TV is about 60 kT or less. For a 
classical nucleus to have an energy less than 60 kT 
its radius must, according to Eq. (1.5), satisfy 

r< (45kT/Tra-)l . (5.1) 

Now we·can assume the classical theory to apply if the 
interface of the nucleus has a thickness, l, which is 
much smaller than the radius, or 

Z«r< (4SkT/mT)!, 

which yields 

(1I"al2j45kT) «1. (S.2) 

We suggest that this condition be used as a criterion 
as to whether or not nucleation will occur in a classical 
mode. By use of Eqs. (2.15) and (2.2S) of Paper I, 
the product al2 in inequality (5.2) can be written 

in which (t.j ')max is the maximum value of t.j' when 
Co= c", The inequality (S.2) will always be satisfied 
sufficiently close to the critical point since, in this 
region, 1 varies as (Tc- T)--t and (J' as (Tc- T)!; thus 
(J'l2 approaches zero as (Tc - T)t. Nucleation will occur, 
therefore, in a classical mode along a curve which lies 
just inside the top of the miscibility gap and is tangent 
to it with the same curvature at the critical point. For a 
regular solution, (J'l2 can be evaluated in terms of A/ro, 
where A is the interaction distance defined by Eq. (4.1) 
and ro is the intermolecular distance. In order to indi­
cate the temperature range over which classical nuclea­
tion will be observed in a regular solution, the left-hand 
side of inequality (5.2) has been plotted in Fig. 9 for 
values of Vro corresponding to: (a) nearest-neighbor 
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FIG. 9. Variation with reduced temperature of (7ruf'/45 kT), 
where u is the specific free energy and l the thickness of a flat 
interface, in a regular solution with: (a) X/ro= (1/3)* (nearest­
neighbor interactions only); (b) 'A/ro= (11/7)~ (Lennard-Jones 
6-12 potential); and (c) X/ro=3.4 (experimental value7 for 
cyclohexane-aniline solutions). According to inequality (5.2), 
the condition for observable nucleation in a classical mode is: 
(7ruV/45kT) «1. 

interactions only; (b) a Lennard-Jones 6-12 potential 
(which was used for the calculations in Sec. 4); 
and (c) a value estimated in Paper I from experimental 
measurements of the interfacial free energy between 
coexisting phases of the cyclohexane-aniline system. 
It is evident from the figure that for (b) and (c) 
observable nucleation in the classical mode is restricted 
to the immediate vicinity of the critical point. 

Turning now to the region near the spinodal-in 
fluid systems for which a spinodal exists, it marks the 
limit of metastability of the homogeneous phase. Since 
we have found that W decreases monotonically to zero 
at the spinodal, nucleation will always set in before the 
spinodal is reached. However, if K is sufficiently large 
relative to the maximum in t.j', the point at which 
observable nucleation occurs will be very nearly 
coincident with the spinodal. But as will be seen from 
Fig. 8, this is not true for a regular solution with a 
6-12 potential. 

It is instructive to examine why W is zero at and 
beyond the spinodal. In Paper I, we found that the 
interfacial energy could be represented as the sum of 
two integrals, one representing the contribution of the 
"gradient energy" and the other the free energy 
required to form material of intermediate composition. 
The former contribution decreases, and the latter 
increases, with increasing thickness of the interface. 
The equilibrium thickness is such that the sum of the 
two integrals is a minimum. For a nucleus, the situation 
is somewhat different, since over part of the composi­
tion range N' is negative [see Fig. 1 (b) ] and so 
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TABLE I. Comparison of various nucleation theories with regard to the behavior predicted for W in the vicinity of the spinodal." 

N ucJeation theory 

W at unstable limit of 
metastable region. 

(co--.c.) 

Nature of change in W 
in passing into unstable 

region. 
W in unstable region. 

(co>c,) 

Limiting value of W in 
the metastable region as 

co--.c, and T --. T,. 
- -------- ~-----~------

Three-dimensional models 

Gibbsb (16 .... <T' /3Llj2) Discontinuous unless fT 0 Depends upon interface 
has become zero model 

Beckerc (16....fT3/3Llj2) 
= [2S6 .... (N Am",)3/3eJ 

Continuous (16.....r/3Llj2) ro 

Hobstetterd [16 .... (.!V .{IIl<» )3/3~2J Discontinuous 0 co 

Present Work [197K3!2 (c,-co) 3!2/~1!2J Continuous 0 0 

One-dimensional models 

Becker 2fT Continuous 2fT 0 

Hobstetter 18m«> (c.-co) 2 Continuous 0 0 

Hillerte [18 (3m",) 1!2~1!2! 5J(c" - CU)'!2 Continuous 0 0 

• The quantities w and ~ are defined in Eqs. (4.4) and (3.17); m is the fractional number of nearest neighbors for a given atom which are in an adjacent plane. 
and NA the number of atoms per unit area at the interface. The relationships were derived on the assumption that the product mN A is independent of orientation. 

b See reference 1. 
C See reference 3. 
d See reference 13. 
e See reference 12. 

reduces the free energy which has to be expended in 
forming the material of intermediate composition. As 
the spinodal is approached, the range over which 6.1 ' is 
positive decreases, and at the same time the maximum 
positive value attained by 4f' also decreases. These 
two factors favor an increasingly diffuse interface. 
Finally, at the spinodal and beyond, 6.1', decreases 
monotonically with increasing composition difference 
so that there is no barrier to the formation of an 
infinitely diffuse interface. Thus, in effect IT can be 
considered to vanish at the spinodal. 

As we have previously indicated, most of the existing 
nucleation theories approach one another and the 
present treatment in the properties predicted for the 
limit of zero supersaturation. However, as shown by 
Table I, they are markedly at variance in their pre­
dictions of W in the vicinity of the spinodal. The only 
other theory which agrees qualitatively with the 
present treatment is that due to Hillert.12 Unfortu­
nately, his calculations were confined to a one-dimen­
sional model which is of doubtful physical significance 
in the metastable region. A one-dimensional classical 
nucleus, for instance, would just consist of two point­
boundaries regardless of the supersaturation. 

It is interesting to note that Hobstetter's treatmenU3 

gives a discontinuous change in W at the spinodal; 
in the metastable region it approaches a limit at c. of 

12 M. Hillert, "A theory of nucleation for solid metallic solu­
tions," Doc. Sci. thesis, Massachusetts Institute of Technology, 
Cambridge (1956). 

13 J. N. Hobstetter, Trans. Am. Tnst. Mining Met. Petrol. 
Engrs. 180, 121 (1949). 

(rt) of W for a Becker nucleus, and then drop? to zero 
in the unstable region. This treatment retains the 
assumption that the nucleus is homogeneous but differs 
from Becker's in that a composition is selected which 
minimizes W. This procedure can be considered as a 
variational method which, because it has one param­
eter more than Becker's theory, gives a better approxi­
mation to W. However, it results in a nucleus composi­
tion for which the chemical potentials of the com­
pontents are not equal to those of the exterior phase. 
Were it not for the manner in which the nucleus is 
constrained to a uniform composition, there would be a 
spontaneous change in the concentration at the center. 
The absolute difference in chemical potentials between 
the nucleus and the exterior phase increases with 
increasing supersaturation, and one therefore, would, 
expect Hobstetter's treatment to give a progressively 
poorer approximation for W as Co approaches the 
spinodal. 

In the second part of Table I, we have added the one­
dimensional analogs of the treatments of Becker and 
Hobsetter in order to demonstrate that there can be a 
marked change in the predicted properties when a 
one-dimensional model is extended to three dimen­
sions. 

In conclusion, we should like to review the assump­
tions upon which this treatment is founded. The first 
is that the free energy of the homogeneous system in the 
metastable and unstable regions can be represented by 
a continuous function of the form indicated in Fig. 
1 (a). Secondly, in the general formulation presented in 
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Paper I, it was assumed that composition derivatives 
higher than the second could be neglected in the expan­
sion of the free-energy of a nonuniform system. This 
implies that the ratio of the maximum in tlf I to the 
gradient-energy coefficient K should be small relative 
to the intermolecular distance. Since the maximum in 
Ai' decreases with increasing supersaturation, it is 
evident that the latter condition will always be satis­
fied sufficiently near the spinodal. 

Finally, it must be emphasized that the results we 
have presented are strictly applicable only to incom­
pressible fluids. Nucleation in solids may follow an 

entirely different pattern because of the strain energy 
contribution. 
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