Complex Numbers Review

Leti =+/—1 an imaginary number

Although i is imaginary, the coefficient in front of it (y) can have a significance on the real

world.*
Note tan @ = % ore = tan_li

Turns out exponents of complex numbers have sine or cosine like behavior.
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Looks meaningless, eh?

But let’s recast our data point as r-(cos® + isin®)
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So it will turn out that e® = cos® = isin®
Also, you can show that
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Anyway, if someone asks you to plot e®, you can just take the real part and the imaginary part
and call it a cosine or sine function

Re(e'?) = cos6
Im(e?) = sind
Why is this useful to us in polymer science?

Because we know that the force on a viscoelastic object is the sum of two parts: one in-phase and
the other out-of-phase.

In-phase =0 < y
Out-of-phase (by 90°) =0 « y°
So elastic can be the real part and visco can be the part associated with the imaginary term.

Define G = G' = iG" = |G|(cosS§ + isind)
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Thus:
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*According to Feynman, who does a bang-up job of imaginary numbers, one reason we call it an
imaginary plane is tied to harmonic motion. As something like a hockey puck moves in harmonic
motion along the x-axis, we can liken that to rotation of our black point in the diagram. The
black point and its rotation are imaginary, but the hockey puck tied to a horizontal spring is not.
This real motion is the projection of the imaginary rotary motion onto the horizontal plane.
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