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Disclaimer

Modeling polymeric systems is *not* 
my main area of expertise (however I 
am trying to get into that area)



Outline

• UPDATE!

• Today’s material adapted from: 

• Keith Gubbins’ lecture notes on Advanced Chemical Engineering 

Thermodynamics, North Carolina State University

• David Kofke’s lectures on Molecular Simulation, SUNY Buffalo 

http://www.eng.buffalo.edu/~kofke/ce530/index.html

• Sharon Glotzer’s lectures on Computational Nanoscience of Soft Materials, 

University of Michigan

• Doros’ paper; de Pablo et al paper
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Simulation Methods - General Features
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Simulation Methods - General Features

• Role of computer simulations

– Assist in interpretation of experimental 
results

� e.g., capture subtle details of 

molecular motion, structure, other 

phenomena difficult / expensive to 

probe with experiments 

– Predict / explore effect of variables

� e.g., explore conditions for which 

experiments would be impossible / 

expensive

– Give insights / complement 
experimental work; influence 
experimental efforts

– Test validity of theories (which are 
computationally less expensive than 
simulations)

From Allen and Tildesley, Computer Simulation of Liquids (1987)
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Molecular Dynamics: Introduction

• Molecular Dynamics (MD) simulates the “real” dynamics of a collection of 

atoms, molecules, particles, or other extended objects. MD is one of the most 

commonly used methods for materials simulations. 

• Positions and velocities of each molecule are followed in time by solving 

Newton’s equations of motion:

i=1,2,3,…N

U = inter/intra-molecular potential (i.e., interactions between atoms)

ri =  position vector of atom i

Fi = force acting over atom i

mi = mass of atom i

Thus MD is a deterministic method: the state of the system at any future time 

can be predicted from its current state (in principle, at least).
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– Newton’s equations of motion for the N-particle system:

where:

– In MD these equations are integrated numerically to obtain the time
evolution of the system under the given potential.

– There are several approximate methods to numerically solve this system of
equations.

MD: How does it work?

Force acting on particle i
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Each method has trade-offs:

• Accuracy

• Stability

• Time reversibility

• Memory requirements

• Complexity
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Verlet Algorithm  2. Flow diagram

Configuration r(t)

Previous configuration r(t-δt)

Compute forces F(t)

on all atoms using r(t)

Advance all positions according to

r(t+δt) = 2r(t)-r(t-δt)+F(t)/m δt2

Add to block sum

End of 

block?

No Block

averages

Yes

Initialization

Reset block sums

Compute block average

Compute final results

blocks per simulation

Entire Simulation

1 move per cycle

New configuration

cycles per block

Add to block sum

One MD Cycle

One force 

evaluation 

per time step

9

Pair Potentials: Large, Flexible Mols.

• Total pair energy breaks into a sum of terms:

DNA

( ) polelecdisptorsbendstr

N
UUUUUUU +++++=r

• Ustr - stretch

• Ubend - bend

• Utors - torsion

• Udisp - dispersion (van der Waals)

• Uelec - electrostatic

• Upol - polarization
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A Typical Force Field
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Atomistic MD and polymeric systems 

However, for polymer melts the longest relaxation times are on the order of 

milliseconds – seconds (for typical molecular weights under processing 

conditions)  

A very optimized MD package (Gromacs v. 4) dealing with a system of an ion 

channel placed in a model membrane solvated with water and ions (totaling 

121,449 atoms), running on 128 cores (32 nodes) in parallel ~ 66 ns/day            

= 66 x 10-9 s/day (Hess et al., J. Chem. Theory Comput. 2008, 4, 435)

→ A ballpark estimate: to simulate 1 s of real time would take  

The time step, ∆t, for numerical integration of Newton’s equations of motion in 

atomistic MD is determined by the fastest modes.

s 10 fs 1~ 15−=∆t (Bond vibrations)

fs 10 s 1~
15=totalt

!!!years! 41,483 ~ days 515,151,15~
days 1066

s 1
~ timeComputing

9-×

With current computers, we can model a few microseconds (at most) 

→ Atomistic MD is unable to equilibrate a long-chain polymer melt 
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Modeling polymeric systems 

First, introduce simplifications to atomistic methods to remove the faster 

degrees of freedom, and/or treat groups of atoms (‘blobs of matter’) as 

individual entities interacting through effective potentials → coarse-graining 

the system.

C2
C1 E2

E1

Although it might appear simple, 
properly coarse-graining a system is 
difficult… 

Application of coarse-graining to 
polymers has been reviewed:

J. Baschnagel et al., Advances in Polymer 

Science 2000, 152, 41

F. Muller-Plathe, ChemPhysChem 2002, 3, 754

D. Reith et al., J. Comp. Chem. 2003, 24, 1624
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Modeling polymeric systems 

Coarse-graining polymeric systems

Three levels of representation of atactic polystyrene melt specimens at 500K and 1 bar: 

(a) Detailed united-atom model formed from four 350 dyad-long parent chains (molar mass 36,500 g mol−1). 

Segments coming from one of the parent chains are traced in red, for clarity. 

(b) Coarse-grained model formed from four 350 dyad-long parent chains, wherein each dyad of monomers 

is represented as an interaction site (superatom). The two types of dyads (m, r) are shown in different 

colors.
D. N. Theodorou, Chem. Eng. Sci. 2007, 62, 5697
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Modeling polymeric systems 

Monte Carlo method: generate configurations of a system by making 

random changes to positions/orientations/conformations of the 

atoms/molecules, over and over again

Differences between MD and MC: 
– MD: generate successive configurations by calculating conservative forces 

derived from gradients in the potential energy and then solve deterministic 

equations of motion 

– MC: generate random configurations with a probability that depends on the 

potential energy of a new configuration compared with the previous one.

• At each iteration of a MC simulation, a new configuration 

is generated. 

• This is usually done by making a random change to 

the coordinates of a randomly chosen particle, using 

a random number generator. Moves are accepted 

with a probability

• A great variety of random moves can be attempted

( ) ( )[ ]kTUU oldnew −−exp~

Trial Moves in MC simulation

• Significant increase in efficiency of algorithm can be achieved by the 

introduction of clever trial moves 

– Example: simulating chain molecules (e.g. polymers). Relaxation times 

are large, exploration of phase space is very slow, need concerted 

moves to disentangle chains

– Example of moves for polymers: 

– Reptation, crankshaft 

– Chain regrowth 

– and many more

Using these physically unrealistic 
moves, we can explore phase space 
faster than in MD!
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Trial Moves in MC simulation

L. D. Peristeras 

et al., 

Macromolecules 

2005, 38, 386

“Connectivity-altering moves provide vigorous sampling of the long-range conformational 
features of chains (end-to-end distance, radius of gyration), and are thus extremely efficient in 
inducing equilibration in long-chain polymer systems”     D. N. Theodorou, Chem. Eng. Sci. 2007, 62, 5697
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MC simulations: coarse-grained polymeric systems  

D. N. Theodorou, Chem. Eng. Sci. 2007, 62, 5697
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Rheology of coarse-grained polymeric systems  

• Rheological properties important for polymer processing

• Atomistic MD not suitable (long relaxation times); MC not suited to measure time-dependent 
properties (only equilibrium properties)

• A hierarchical strategy can be used:

1. Run MC simulations of model polymer systems. Properly equilibrate systems

2. Run short MD simulations of systems previously equilibrated via MC simulations

3. Map time-dependent results (time correlation functions, mean-square displacements) 
from short MD simulations onto mesoscopic theories of polymer dynamics (e.g., 
Rouse, reptation model)

4. Use the mesoscopic theories (with parameters from MD simulations) to estimate 
rheological properties 

D. N. Theodorou, Chem. Eng. Sci. 2007, 62, 5697

This mapping process can also: 
(1) give insights about the 
ranges of applicability of the 
mesoscopic theories, (2) 
pinpoint inadequacies in the 
assumptions of the mesoscopic 
theories, which will help in the 
development of better theories
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Ab Initio Methods (including DFT)

Calculate properties from first principles, solving the 

Schrödinger (or Dirac) equation numerically.

Electron localization function 

for (a) an isolated ammonium 

ion and (b) an ammonium ion 

with its first solvation shell, 

from ab initio molecular 

dynamics. From Y. Liu, M.E. 

Tuckerman, J. Phys. Chem. B

105, 6598 (2001)

Pros:

• Can handle processes that involve bond 

breaking/formation, or electronic rearrangement (e.g. 

chemical reactions).

• Methods offer ways to systematically improve on the 

results, making it easy to assess their quality.

• Can (in principle) obtain essentially exact properties 

without any input but the atoms conforming the 

system.

Cons:

• Can handle only small systems, about O(102) atoms.

• Can only study fast processes, usually O(10) ps.

• Approximations are usually necessary to solve the 

eqns. 



Semi-empirical Methods

Use simplified versions of equations from ab initio

methods, e.g. only treat valence electrons explicitly; 

include parameters fitted to experimental data.

Structure of an oligomer of 

polyphenylene sulfide 

phenyleneamine obtained with 

the PM3 semiempirical 

method. From R. Giro, D.S. 

Galvão, Int. J. Quant. Chem. 

95, 252 (2003)

Pros:

• Can also handle processes that involve bond 

breaking/formation, or electronic rearrangement.

• Can handle larger and more complex systems than 

ab initio methods, often of O(103) atoms.

• Can be used to study processes on longer timescales 

than can be studied with ab initio methods, of about 

O(10) ns.

Cons:

• Difficult to assess the quality of the results.

• Need experimental input and large parameter sets.

Atomistic Simulation Methods

Use empirical or ab initio derived force fields, together 

with semi-classical statistical mechanics (SM), to 

determine thermodynamic (MC, MD) and transport 

(MD) properties of systems. SM solved ‘exactly’.

Adsorption of Ar molecules in 

a model MCM-41 silica pore. 

From B. Coasne, F. R. Hung, 

R. J.-M. Pellenq, F. R. 

Siperstein and K. E. Gubbins, 

Langmuir 22, 194 (2006)

Pros:

• Can be used to determine the microscopic structure 

of more complex systems, O(105-6) atoms.

• Can study dynamical processes on longer timescales, 

up to O(1) µµµµs

Cons:

• Results depend on the quality of the force field used 

to represent the system.

• Many physical processes happen on length- and 

timescales inaccessible by these methods, e.g. diffusion 

in solids, many chemical reactions, protein folding, 

micellization.



Mesoscale Methods

Introduce simplifications to atomistic methods to 

remove the faster degrees of freedom, and/or treat 

groups of atoms (‘blobs of matter’) as individual 

entities interacting through effective potentials.

Phase equilibrium between a 

lamellar surfactant-rich phase 

and a continuous dilute surfactant 

phase in supercritical CO2, from a 

lattice MC simulation. From L.F. 

Scanu, C.K. Hall, K.E. Gubbins, 

Langmuir, 20, 514 (2004) .

Pros:

• Can be used to study structural features of complex 

systems with O(108-9) atoms.

• Can study dynamical processes on timescales 

inaccessible to classical methods, even up to O(1) s.

Cons:

• Can often describe only qualitative tendencies, the 

quality of quantitative results may be difficult to 

ascertain.

• In many cases, the approximations introduced limit 

the ability to physically interpret the results.

Continuum Methods

Assume that matter is continuous and treat the 

properties of the system as field quantities.  

Numerically solve balance equations coupled with 

phenomenological equations to predict the properties 

of the systems.

Temperature profile on a 

laser-heated surface obtained 

with the finite-element 

method. From S.M. 

Rajadhyaksha, P. Michaleris, 

Int. J. Numer. Meth. Eng. 47, 

1807 (2000)

Pros:

• Can in principle handle systems of any (macroscopic) 

size and dynamic processes on long timescales.

Cons:

• Require input (viscosities, diffusion coeffs., eqn of 

state, etc.) from experiment or from a lower-scale 

method that can be difficult to obtain.

• Cannot explain results that depend on the electronic 

or molecular level of detail. 
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The Monte Carlo Method: procedure

• At each iteration of the simulation, a new configuration is 
generated. 

• In a NVT simulation, this is usually done by making a 
random change to the coordinates of a randomly chosen 
particle, using a random number generator:
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• The potential energy of the new configuration is calculated. We 
also calculate the difference in potential energy between the new 
and the old configuration,

• Calculate the Boltzmann factor,

• If δU < 0, the new configuration is accepted

• If δU ≥ 0, the Boltzmann factor is compared to a random 
number ξ in the range (0,1)

• If ξ ≤                        , the new configuration is accepted

• If ξ >                        , the new configuration is rejected. 
The old configuration is retained for the next iteration.
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For more details about the 

theory behind this algorithm, 

please consult any of the 

molecular simulation textbooks. 


