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Viscosity 
 

Viscosity Defined 

 

Viscosity is the most tangible effect of macromolecules, and it was used to determine that 

there were macromolecules, as opposed to physically attracted aggregates.   

 

Consider the "conceptual viscometer" below, made from two flat plates, a pulley and a 

weight.   

 

 

Figure 1 

 

The weight, acting through the pulley, establishes a velocity of the upper plate relative to 

the stationary lower plate.  If the fluid is viscous, the upper plate moves more slowly.  

Now let's look in more detail, zeroing in on the two plates and fluids only.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 

 

Define:   

F = force 

V = velocity of upper plate 

u = local viscosity in fluid 

A = area of plate 

 

Stick boundary 

conditions   

F=mg 
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Assume laminar flow -- i.e., u increases linearly with y 

 

 

 

 

 

 

 

 

Figure 3 

 

Note that 
y

v

dy

u


=


        (4.1) 

 

Define:   = 
y

x




 = shear strain     (4.2) 

 

Define: =
dt

d
  = shear strain rate     (4.3) 

 

Since y is constant, we get:   

 

y
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x
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Comparing Eq. 4.1 and Eq. 4.4, we have: 

 

 ==
dy

du
 gradient in local velocity = slope of plot above.   (4.5) 

 

Define:   = F/A = shear stress (force per unit area)   (4.6) 

 

Experimentally, it is often found that the shear stress is proportional to the strain rate, and 

viscosity (symbol ) is the constant of proportionality:   

 

 =    (4.7) 

 

 

 

0 

u 

 y  y 

v 
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Engineering textbooks often use the symbol  instead of . Who knows what 

they then use for turbidity and lag time, but there just no denying the Greeks 

should have invented a bigger alphabet. Meanwhile, use common sense to 

recognize that this  is not the same as degree of polymerization!   
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Or…..we can say that shear viscosity  is the ratio between shear stress  and the shear 

rate 
.

:   = /
.

      (4.8) 

 

 

 

 

 

 

 

 

 

 

 

 

Fluids that obey the strict linearity between shear stress and strain rate are called 

Newtonian fluids.  Polymers often exhibit non-Newtonian behavior:   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 

 

This plot has the equivalent shown below.  If you don’t see this, then you need to get 

your money back from Calculus class (or see me, which might be easier).   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5

Exercise:  Show that the cgs units of viscosity are g•cm-1
•s-1.  This is called a 

poise.  For reference, the viscosity of water is about 0.01P = 1 cP.  Another 

popular unit of viscosity is the Pa•s.  What is the conversion factor between 

these two?   

non-Newtonian (shear thickening) 
=   

  

non-Newtonian (shear thinning) 

Newtonian 

 

  

non-Newtonian  

(shear thinning,  a.k.a. pseudoplastic) 

Newtonian 

non-Newtonian  

(shear thickening, a.k.a. dilatant) 
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Plastic behavior 

 

Some materials appear to be real solids…as long as you do not try too hard.  Then they 

flow like liquids.  These are called plastics.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7 

 

 

=   

  

yield  

Shear thinning is very common; examples include many polymer solutions (at 

sufficiently high shear rates), some emulsions, paints and so on. Paint manufacturers 

design paint to roll on easy, so you don’t have to push hard and get worn out, but 

then to thicken when there is no shear, thus preventing runs and drips.   

 

Shear thickening is less common; examples include corn starch in water and 

sand/water mixtures.  A really fascinating application is found in sophisticated, 

lightweight bulletproof vests.  This application is based on dispersion of silica 

particles.  Another use is in torque converters for some all-wheel-drive systems; if 

slippage occurs, the shear rate rises and the material stiffens to “get a grip”.   

 

  

Plastic behavior 

 

When this line is straight, 

the material is called a 

Bingham plastic 

http://discoveriesandbreakthroughs.org/dbis/stories/2006/15201.html
http://discoveriesandbreakthroughs.org/dbis/stories/2006/15201.html
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Time-dependent behavior:  thixotropy & rheopexy 

 

Rheopexy:  the apparent viscosity increases with time at a steady rate of shear; this is rare.   
 

Thixotropy:  the apparent viscosity decreases with time at a steady rate of shear.  This is 

fairly common, and occurs in some inks, paints and greases. When a thixotropic material 

is subjected to increasing rates of shear, then slowly returned to a lower rate of shear, a 

hysteresis loop may open up, as shown below.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8 

 

Theoretical expression 

 

Lots of effort has gone into trying to predict and explain viscosity behavior, such as shear 

thinning.  It isn’t easy.  The most important equation involves a power law, and many 

fluids, described as “power law fluids”, follow this equation: 

 
nk =     (4.9) 

 

The lead term is called the consistency index, and the exponent n is the flow index.  

Clearly, if n = 1, k is just viscosity.  Values of n < 1 correspond to shear thinning.   

 

 

 

 

 

 

 

Ketchup is a good example; only after you supply a sudden force or shock does 

it flow. Fortunately, the solution to this polymer problem (of critical importance 

to Minnesotans and those who eat Minnesota style as a result of marriage) is 

now known, and it is a polymer-based fix, too:  put the ketchup in a plastic 

container and squeeze it to make it come out.  

 

  

For materials with a yield stress, it is customary to subtract off that yield 

stress before making the analysis for n.   

There is even a special expression that works well for chocolate!  It is called 

the NCA/CMA Casson expression.   
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Energy Picture of Viscosity 

 

Everyone is familiar with the famous wave-particle dual nature of fundamental 

quanta such as electrons and photons.  Often it is convenient to have two ways to look at 

a problem, and viscosity is such a case.  We have seen the traditional definition in terms 

of shear stress.  Now let's look at it from the viewpoint of energy dissipation because 

when you stir a solution it does dissipate the mechanical energy you apply.   

 

Since a force (i.e., A) is applied over a distance (i.e., x) work is done on the fluid.   

 

 W = Fx = Ax      (4.10) 

 

The rate at which work is done is the power dissipation into the fluid. 

x
dt

d
A

dt

dW
W ==  = Power dissipation   (4.11) 

 

But x = y where y is constant, so  

 

yAW =         (4.12) 

 

Now let V = Ay represent the volume.  Recall that =   and we obtain:   

 
2=  VW        (4.15) 

 

Viscosity is the power dissipation per unit volume per squared shear rate.   

 

 

 

 

 

 

 

 

 

 

 

 

Exercise:  Check that the units on both sides of the last equation are the same.   
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Viscosity of Solutions 

 

 We must first define a few things about solutions.  Suppose the fluid contains 

particles that occupy a fraction,  of the total volume, V.  (In a typical suspension, say a 

latex paint,  might be ~0.10 or about 10% of volume).  Let g represent the total mass of 

particles, and assume they have density   The mass is given by:   

 

 g = V = (volume)(fraction that is solid particles)(mass/volume of solids) 

         (4.16) 

 

Define:  c = mass/volume concentration = g/V.     (4.17) 

 

Thus, c =           (4.18) 

 

Now it is easy to "guess" a theory of the viscosity of suspensions.  We showed that the 

viscosity was inversely proportional to the power dissipation rate per unit volume: 

 

 
2

=




V

W
       (4.19) 

 

The "active ingredient" that dissipates the power is the solvent.  If we fill it partly with 

inert ingredients, the effective volume is reduced:  Veffective = V(1-).  Thus, we can guess: 

 

 )1(
)1( 22

+



−

=








V

W

V

W
     (4.20) 

The last approximation follows as long as  is small.  (If your boss pays you 90% of your 

normal wage one day, and 110% the next, you almost break even, the difference being only 

about 1%).   

 

Define:  o = solvent viscosity (same as equation above, except  = 0).   (4.21) 

 

Define r = relative viscosity = /o = (1+)     () 

 

Define sp = specific viscosity = =


−

0

0     (4.23) 

 

This final equation is not quite correct, due to that lame effective volume guess.  Einstein 

showed that we need an extra parameter, called the shape parameter,    

 

sp = =


−

0

0       (4.24) 
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Note:  for spheres,  = 5/2.       (4.25) 

 

The equation says we don't have to worry much about the change in viscosity due to 

solids. For example, a small amount of dust in the solution doesn't upset viscosity (it does 

upset some other macromolecular methods).   

 

Return to Staudinger's Hypothesis 

 

 Recall that Staudinger was interested in trying to beat the "polymer effect" out of 

the system by diluting it.  Now the specific viscosity is just the difference added by the 

particles, divided by the initial viscosity, a sort of fractional difference.  His plan was to 

see how this fractional difference changed with concentration.  He realized that sp would 

tend to zero, but would it do so faster than the concentration itself?  If not, then there was 

some intrinsic viscosity due to the polymer.  Staudinger thought the polymers would be 

extended, but he had no real way of estimating their volume fraction.  He chose 

mass/volume concentration as more convenient.   

 

 Define:  [] = 
cc

sp

→ 0

lim
 = intrinsic viscosity   (4.26) 

 

 This parameter is usally applied to polymers, but it's instructive to see what it 

does for spheres.  Following the equations above:   

 

 [] =        () 

 

Now  for a solid particle is its mass (Molecular weight/Avogadro's Number) divided by 

its volume, Vp.   

 

[] = 
M

NV ap
       (4.28) 

 

For a sphere (Vp = 4R3/3 and  = 5/2) we obtain  

 

 [] = 
M

N
R a3

3

10
       (4.29) 

 

The intrinsic viscosity does not change with mass for solid objects! Volume and mass 

increase in lock-step and so cancel each other out for solid objects.  The intrinsic 

viscosity is quite low for solids--for spherical polystyrene latex particles (density ~ 1 

g/mL) the intrinsic viscosity is 2.5 mL/g.  The conventional units are (don't ask why--

maybe Staudinger liked 100 mL volumetric flasks) dL/g.  On this scale, the polystyrene 

latex has an intrinsic viscosity of 0.025 dL/g.   

 

 Now the key point.  Many polymers have intrinsic viscosities quite a bit higher 

than this.  Not only that, their intrinsic viscosities in many good solvents were similar.  If 
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the units of the polymer were only physically attracted, certain solvents might have been 

expected to reduce the intrinsic viscosity while others would increase it.  Not only that, 

the data were precise and believable.  And finally, the intrinsic viscosity depended on the 

mass, suggesting extended (if not so much as Staudinger originally thought) chainlike 

particles.  We are not ready for it yet, but it turns out that the way in which [] depends 

on M gives us a handle on the actual shape of the polymers.  Meanwhile, it is important 

to understand why the polymer intrinsic viscosities are so much higher than spheres.  The 

reason is that polymers give a large radius for a little mass.  Defining the radius of 

polymers is the part of this that we are not ready for yet, but perhaps it will help to 

consider a tree:   

 

 
 

Figure 9 

 

The canopy of a tree is mostly air—i.e., empty.  Similarly, about 80-90% of a polymer’s 

interior is filled with solvent.  Were you to climb into this tree (doesn’t that seem 

tempting and fun?) you would observe that there is almost no wind inside.  The air stream 

goes OVER and AROUND the tree.  It is the same with polymers—the solvent stream 

goes over and around them during shear flow.  This great hydrodynamic volume (we will 

eventually call it Rh
3) is achieved with very small mass of added polymer.  Thus, [] of 

polymers is much higher than that of solids.  Also, it will turn out that it depends on 

molecular weight—a most useful fact.   

 

Another View of Staudinger’s Hypothesis 

 

 We could approach the problem of how visocisty depends on concentration from 

a graphical point of view. This will show us [] in a somewhat different light. Referring 

to the plot below, we can write viscosity as: 
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....2

o +++= cbca    (4.30) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10 

 

where a and b are parameters with appropriate units. All this says is  will start at the 

value for solvent, o, and rise with concentration…linearly at first, then with curvature. 

Considering the definition of sp (Eq. 4.23) we can write  

 

...
oo

sp

o

o ++==
−

c
ba

cc 






    (4.31) 

 

By comparison with the definition of [] (Eq. 4.26) we can see right away that []=a/o 

or initial slope a = []o. The initial slope of viscosity vs concentration is proportional to 

the solvent viscosity, and the constant of proportionality is []. That initial slope is what 

you cannot eliminate by dilution. By convention, the second term (the curvature in Figure 

10) is rewritten as b/o = k’[]2 and we can write 

 

    ...'
2sp

++= 


ck
c

    (4.32) 

 

This ungainly expression, called the Huggins-Kramer equation, has a cleaner form which 

is unitless on both sides: 

 

    ...'
22

sp ++=  ckc     (4.33) 

 

By comparison to Eq. 4.24 you can see that the product []c is something like the volume 

fraction. It is the volume fraction that the polymer chain has managed to “tie up” 

hydrodynamically speaking! At the overlap concentration c* = 1/[] the polymers 

effectively (hydrodynamically) touch to control (hydrodynamically) all the space. This is 

typically at a few percent concentration by mass…polymers very effectively tie up the 

solvent in a hydrodynamic sense.  

 

Initial slope = a 

c 
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Intrinsic viscosity yields molecular weight…not for solids.  

 

Equation 4.29 says the intrinsic viscosity of a solid does not vary with mass or size 

because M  R3. But for polymers, we shall see in Ch. 6 (Dimensions) that M  Rn 

where n typically ranges from 0.5 to 0.6 for flexible, random flight polymers. Thus we 

may expect []  R3/M  M 
a where a = 0.5 to 0.8. A constant of proportionality is 

usually specified, leading to the Mark-Houwink-Sakurada equation, one of the most 

famous expressions in polymer science: 

 

[] = KM 
a        (4.34) 

 

If the intrinsic viscosity and molecular weights are determined for a series of polymers, a 

Mark-Houwink-Sakurada plot can be built connecting molecular weights to intrinsic 

viscosity for unknown polymers of the same type, as shown in Figure 11. The K and a 

parameters have been determined for many polymers. The a parameter is particularly 

illuminating, as it gives an indication of the shape of stiffness of polymers. For example, 

a = 0.5 signifies a polymer for which intramolecular attractions between the chain 

segments exactly cancel the natural tendency of the polymer to expand in order to avoid 

two segments separated by a long distance along the backbone having to occupy the exact 

same space. The a value associated with Figure 11 is considerably higher than 0.8, 

indicating chain stiffness. 

 

 
 

Figure 11 
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Related Links & References 

 

1) The books by Van Holde and the older Flory text are useful.   

2) Some of this has taken from the Brookfield Engineering publication, More 

Solutions to Sticky Problems.   

3) Experimental links to viscosity info: 

http://russo.chem.lsu.edu/howto/WELBROOK.DOC 

http://russo.chem.lsu.edu/howto/IntrinsicVisc.doc 

4) Figure 11 is by Bu et al. 10.1021/ma00101a027 

http://www.brookfieldengineering.com/~staging/support/documentation/solutions-to-sticky-problems.asp
http://www.brookfieldengineering.com/~staging/support/documentation/solutions-to-sticky-problems.asp
http://russo.chem.lsu.edu/howto/WELBROOK.DOC
http://russo.chem.lsu.edu/howto/IntrinsicVisc.doc

