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Polymer Dimensions
References: 
Tanford Ch. 3—Sec. 9,10



Richards Ch. 4 (don’t worry about theta temperature)



Flory Ch. X

We will follow mostly the approach of Tanford and Richards, using the notation of Richards and/or Flory

Theme:

· It is not even easy to define the size of a wiggly object like a polymer.  

· It’s not easy to define shape, either, but there is a trick:  how mass changes with size (assuming we can define size) tells us shape.  

· This size vs. mass relationship isn’t so helpful for some biomolecules, because they only come in one molecular weight (e.g., proteins).  

Outline:

1. Define some dimensions.
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Freely jointed model

3. Define important terms:  jargon of the macromolecular yardstick.

4. [image: image218.wmf]>
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Short-range effects

a. Freely rotating 

b. Hindered rotation:  

c. Matrix formulation & 

correlation between bonds

5. Long-range effects:  excluded volume.  One of the most challenging problems in polymer science.

6. Stiff chains.

7. Distribution of size parameters about the average. 

[image: image219.wmf]>

<

2

r


Introduction

In addition to all the practical reasons shown in the text box above, we study polymer dimensions to appreciate one of the great triumphs of mind over matter because the odds of following a polymer chain’s many conformations are astronomically (beyond astronomically!) low.  Consider a typical vinyl chain.  We can cast three of its bonds in a Fisher projection, as shown below.  The big, blue blobs represent the rest of the chain, and the two ends can be arranged in either of two gauche conformations or in the anti conformation (middle).  Actually, the azimuthal angle f angle can assume not only the values shown but others; for simplicity we assume just these three options.  
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Each bond in a chain of n bonds can have these three choices.  The total number of configurations is ( = 3n.  For a typical polystyrene with M = 106, this is an enormous number!  It well exceeds the age of the universe in seconds (the universe is about 700 nmol seconds old).  Even the fastest computer would not be able to enumerate the configurations, let alone track them.  Yet, we have learned a lot about polymer dimensions.  
Jargon: the language of polymer size
There is no obvious way to define the size of a polymer, but we have no choice but to begin.  The first way is to look at the end-to-end distance.  
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RMS end-to-end distance = 
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Let there be n bonds, each represented by a vector li.  The distance from one end to the other is the vector sum of the bonds:

r = l1 + l2 + l3 + ….. ln
If we were to compute the average of r – i.e., < r > , over all possible conformations of the flexible polymer, the result would clearly be < r > = 0 because sometimes < r > would be positive and sometimes it would be negative.  
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To get anywhere, we have to compute the magnitude of r:  
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=  < r ( r > ½  where < r ( r > is the average over all conformations of the vector dot product of r onto itself.  
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If you knew every vector position (say, at a given instant of time, say in a computer simulation) then it would be easy to calculate < r ( r > ½ because r = (lI and taking vector dot products isn’t hard.  But you would need averaging over many positions (we’ll see soon how many positions).  

b. [image: image226.wmf]f

Radius of gyration = Rg ( <s2>½ .  
[image: image227.wmf]p
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“Radius of gyration” is a horrible choice for the name, because in physics (and Greek food) gyration refers to the spinning of an object around some particular axis.  Here there is no particular “gyrating” motion.  It will be defined below as just a mass-weighted distance of each bead on the chain from the center of mass.  To our previous picture of a polymer as a series of bond vectors, now we add beads representing the atoms or mass elements (see figure below).  Note that if we had n bonds, we must have n + 1 beads.  Now, the number of monomers

in those n + 1 beads all depends (we have used the symbol  for the number of monomers—another notation swap).  If we’re considering polyethylene, then each bead represents a methylene so  = 2(n + 1).  Let’s not let these details get in the way.  
Define:  s, a vector connecting the ith bead to the center of mass, as shown below.  Define 
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The angular brackets <…> again indicate an average over all the conformations

[image: image228.wmf]3

2

p

-


c. Why these two parameters, < r ( r > ½ and <s2>½?  Either one is easy to compute if we know the coordinates of the beads (say, in a computer simulation).  But how would you actually measure either?  It turns out that there is a simple way to measure <s2>½ but not < r ( r > ½.  
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p

 Now what?  We have no useful equations, just definitions that are very general.  That averaging process (except for the solid objects) is troublesome.  Clearly, a polymer has lots of different conformations and statistics will be required.  Such an ugly subject, statistics.  Before we agree on that, let’s double check the argument at the chapter beginning and ask ourselves:  couldn’t we just keep track of all of the configurations in a computer, maybe for a somewhat smaller polymer?  OK, let’s consider NIST #705 standard polystyrene, M = 175,000.  This is 3,360 bonds (2 x 175,000/104 where Mo is the monomer molecular weight; the 2 comes from two bonds per monomer, one within the monomer and one to the next monomer).  As before, each bond can be represented in a standard Fisher projection.  There are three basic configurations:  t, g+, g-.  Each of the bonds can have these 3 basic configurations.  Clearly, there is a huge steric hindrance for the huge chain ends, but let’s just count the possible configurations as if they were equally likely.  There are then  = 33360 conformations.  This is a calculator-stumping number:

log10  = 3360 log10 3 ( (3360)(0.5) ( 1600
 ( 101600
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Even the mightiest computer will not touch this problem, yet it was solved with truly awful computers connected to the fine mind of Paul Flory and others in the 1960s.  
Freely jointed chain model: Chemistry?  We don’t need no stinking chemistry!  

The calculation  ( 101600 at the end of the previous section was presented just to show we have no choice but to think…and simplify.  We will introduce models.  As always, models are not realistic—they help us cope with difficult-to-realize situations.  The first model we consider is the freely jointed chain.  This dispenses with all chemical reality (bond angles, in particular) and allows bonds to do all sorts of things.  A freely jointed chain of 6 bonds can adopt the conformations below…and more.
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The conformation in the middle never happens.  Real chains can’t overlap like that.  In the freely jointed model, a chain will spend some of its time in this middle conformation.  We may therefore expect the freely jointed model to err on the small side.  

We can write < r ( r > = < (
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You just have to write these things out:

< r ( r > = <  l1(l1 + l1(l2  + l1(l3 +...l1(ln   + l2(l1 + l2(l2  + l2(l3 +….l2(ln + ….. + …>

It turns out that if you arrange the products in the form of a matrix (it is not a matrix, because all the elements are added) it becomes easier to see the nature of the beast. 
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Now, each term in this “matrix” is a vector dot product.  For example the term

 l2(l3 means the magnitude of l2 times the magnitude of l3 times the cosine of the angle between these two vectors:

l2(l3 = (l2((l3(cos23
In general it would be impossible to know but, in fact, we don’t have to know it!  Like the Alamo, remember the average!  When we average that cos23term, it will go away.  Why?  Because as the angle between bond 2 and bond 3 varies, cos23 is sometimes positive, sometimes negative.  This is true of all the terms that are not on the diagonal.  For the terms that are on the diagonal, like cos55, the angle of the vector with respect to itself is always zero, and cos(0) = 1 (also always).  So these terms, there are n of them, all survive the average completely intact.  Thus 

< r ( r >  =  l12 + l22 + l32 ….. ln2  

In the common case that li = constant = l for all i, we have:   

[image: image234.wmf]ò

ò

r

r

=

=

V

V

g

V

d

s

V

d

s

s

s

R

3

3

2

2

2

)

(

)

(

< r ( r > =   nl 2 

[image: image235.wmf]>

<

2

r



The Freely Jointed Chain as a Yardstick for More Detailed Models

In this section we introduce standard jargon that lets us compare the freely jointed model to more realistic models that will be developed subsequently.

a) General considerations:  exponents

The FJ model says:  “size” ( n1/2 ( M 1/2
We took out the l to produce an example of a scaling relation; if the mass quadruples, the size doubles.  Exponents are very important in scaling relations, and the exponent connecting size to mass is usually called .  





R ( M 
 = ½ in the FJ model.

Some people like to look at the relationship upside-down:





M ~ Rdf 



with

df = 1/

The exponent df  is called the “mass fractal dimension”.  It’s clearly 3 for solid objects, like a sphere.  It is 2 for planar objects, including disks and bubbles.  It would be 1 for a thin rod or a circle.  The fractal dimension is an indicator of shape:  we can get shape by seeing how mass scales with size.  It is a coarse indicator, though:  

df is 2 for the FJ chain, even though it clearly maintains no similarity to disks or other planar objects that have df = 2.  

The fractal dimension does not have to be an integer!  That is how it got its name.  Aggregates of solid spheres have df  ranging from about 1.6 to 2.2 depending on the mechanism of aggregation  It turns out that some polymer shapes also have non-integer fractal dimensions.  Patience—we will see.  
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Suppose we next consider £, -£,,, terms:





b) Characteristic ratio and expansion factor.  

There are at least two things wrong with the FJ model, and we will delineate these in the next section.  Let’s just get the jargon down for now by defining two terms:   

<r2>actual = <r2>FJ Cn 2 

Define:  Cn = characteristic ratio.  It allows for expansion of the chain (compared to FJ) due to chemical bond angles, rotational potentials—i.e., short-term effects.  It does not actually depend strongly on n.  In the high-n (large chain) limit, it’s called C( and it is just a unitless constant.  

Define:  2 = expansion factor.  It handles the long-term, physical behavior.  Unlike characteristic ratio, this one is a function of n, and it matters!  That functionality gets more and more important at high n.  Since 2 depends on n, it has the power (pun intended!) to change the exponent  away from the FJ value, ½.  If the repulsion wins  out, as it does in a good solvent, we expect  to exceed ½; if the attractions win out, as they do in a poor solvent that does not “wet” the chain segments well, then  would get smaller.  

Define:  “unperturbed” means 2 = 1.  This corresponds to a cancellation between attraction and repulsion.  Cancellation can happen in solvent/temperature conditions of intermediate quality, but it is an ideal situation since it represents conquest of the physical, long-range problems.  Such solvents are called Theta solvents; we’ll return to them in due course.  Note:  good solvents are not ideal solvents!  Unless conditions can be found where 2 = 1 it will be difficult to measure Cn -- both terms are on the right side of the equation above. On the left is “size” squared. We do have a hard time measuring end-to-end size, but we can get around that by converting to the more easily measured radius of gyration (see Appendix, but be careful: the trick there does not work for polymers of every shape). 

A more detailed look at what’s wrong with the FJ model  

· Short range problems (chemistry problems)

a) The FJ model would allow bonds to take any angle, including 180º and zero degrees.  That’s totally unrealistic; typical bonds adopt the tetrahedral angle of 109.5º.  

b) Bond angles tend to be correlated.  If one set of bonds assumes gauche, the next may not want to be gauche because this could produce a collision.  

c) The first alkane chain large enough to exhibit this issue is pentane, so the problem is often called the pentane effect.  

· Long range problem (a physics problem)




If you look at a chain from a far distance, as in the figure above, the chemical details fade.  Yet a problem remains:  the chain does occupy a finite volume, and two segments (the little circles) distant from each other along the contour of the chain still cannot occupy exactly the same volume.  Nor will they act independently.  In real systems, be they gases or polymers, there are always two basic non-idealities:  

a) Attraction or repulsion (an enthalpic effect); may depend on solvent.

b) Excluded volume (entropic effect); generally doesn’t go away.

An important difference between polymeric and other systems is that non-idealities cannot be “diluted away” (reminds us of intrinsic viscosity, right?).  No matter how few total chains in the system, the “connectedness” of the polymer chain itself holds segments in the same domain.  Polymers always have that additional non-ideality:  connectedness.  

Summary
We use <r2> as a "yardstick" against which to compare more detailed models or measurements.
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Note:  

Cn depends only weakly on the number of bonds, n.  Often write C( instead.  

Sometimes, the excluded volume effect can be "shut off" (2 = 1).  This is called "unperturbed dimensions" and happens during "theta conditions".  

Cn and C( are short-range effects (e.g., due to finite bond angle).  We can estimate these from fairly simple theories.  The results will not be satisfying because the predicted dimensions are too small for polymer chains in most solvents (works OK in the unperturbed limit).  

2 is much harder to estimate; we'll try to get its salient properties from a theory due to deGennes.  

A close look at the short-range terms
Let us deal with the short-range effects (will work OK in theta solvents, will fail in good solvents).  This model also applies to weakly bending filaments (e.g., some "rodlike" polymers).
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Note: in some books 
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Any of these configurations or free rotation at set angle 
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There are 2(n-1) terms
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Now we have
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You can check Tanford pp. 154-155 for more detailed derivation, but we’ll just handwave:


We first project (i+2) onto unit vector in the (i+1) direction and then take this and project onto i:
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There are 2(n-2) such terms                     
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                                                                                                                                                                                                            Similar for (i)(i+3) contributions:


[image: image19.wmf]å

-

=

+

3

1

3

3

cos

2

n

i

i

i

q

l

l


Comes from:

Project i+3 onto unit vector parallel to    
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 EMBED Equation.3  [image: image21.wmf]



Project result onto unit vector parallel to 
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Project result onto unit vector parallel to      
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In general

<r2> = 
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Frequently, 
[image: image28.wmf]l

l

l

=

=

j

i

for all i, j.  We then get:

<r2> = 
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                Tanford Eqn.  9.11, p.156

1) Define 
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2) add and subtract 
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                                                 This representation 

                                                  is important for proceeding

                                                  to split up terms below

Now group together “n” terms and “non-n” terms.

                                      S0                                                       Si 
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<r2> = 
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let S0 = 
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    Let S1 = 
[image: image47.wmf]1

3

2

)

1

....(

3

2

-

-

+

+

+

n

n

g

g

g

g


         
[image: image48.wmf]n

n

n

n

S

g

g

g

g

g

)

1

(

)

2

(

2

1

3

2

1

-

+

-

+

+

=

-



[image: image49.wmf]n

n

n

S

g

g

g

g

g

g

)

1

(

....

)

1

(

1

3

2

1

-

-

+

+

+

=

-

-



   = 
[image: image50.wmf]n

n

n

n

g

g

g

g

g

g

-

+

+

+

+

-

1

3

2

....



   = 
[image: image51.wmf]n

n

n

n

g

g

g

g

g

g

-

+

+

+

+

-

-

)

....

1

(

1

2

2



   = 
[image: image52.wmf]n

n

S

g

g

-

)

(

0



   = 
[image: image53.wmf]n

n

n

g

g

g

g

-

÷

÷

ø

ö

ç

ç

è

æ

-

-

1

1


or…   S1 = 
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Then <r2> = 
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<r2> = 
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                      where:  
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We will need this full expression for persistence length later.

If n is large and 
[image: image61.wmf]g

is not very near unity, then:


Free rotation 


[image: image62.wmf]\


Just including the bond angle restriction raises <r2> compared to the freely jointed value.

<r2>free rotation = <r2>freely jointed   
[image: image63.wmf]¥
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, free rotation
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for 
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(methylene chain)
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, free rotation methylene = 2

4) Short-range, cont.                     


b) Hindered Rotation

A) Why is rotation hindered?

Consider 1, 2-dichloroethane (carcinogen)


                                          

Suppose we look straight down this bond  
[image: image68.wmf]Þ

NEWMAN Projection


  

g-                                     trans                                        g+
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                 C                    Cl                  The Cl-C bond and C-C bond locate a plane; 
[image: image72.wmf]f


                                                              is the angle the next C-Cl bond makes with this

    Cl                   C                                 plane.  (0 = trans).

Rotational Barriers exist to changing 
[image: image73.wmf]f

, because the large chlorine groups sterically interfere 

V= Potential energy

In principle, one could calculate an average value of 
[image: image74.wmf]f

, or cos 
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Clearly, when the chlorine groups are replaced by the tails of a large polymer chain the hindrance to rotation is the same (or worse!).

Hindered rotation, cont’d







4.12

B) What form does the hindrance take?  The problem is more complex than it’s worth.  Unlike the FR problem, it has little pedagogic value.  

It doesn’t cure the problem:  it still predicts 
[image: image77.wmf]¥

C

that are too small.

Anyway (see Yamakawa pp. 37-40) the answer is:




<r2>HR = 
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                               So 
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for the HR model is
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Hindered rot., cont’d.
C) How to calculate <cos
[image: image81.wmf]f

>?

Need to average over the potential energy, V(
[image: image82.wmf]f

).  V(
[image: image83.wmf]f

) is estimated from low-temperature spectroscopy and, these days, empirical potentials that may be designed to agree with a plethora of measurements.  If V(
[image: image84.wmf]f

) for n-butane is used, then: 
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and 
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But this is still too small.  Remember, 
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C

, expt. = 6.7

Something is definitely missing.  It is that we have only treated one bond at a time.

C) “Correlation” between 
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We have so far assumed 
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If, for example, gauche(+) is repeated twice it may cause more steric hindrance than if the sequence g(+)g(-)

Handling Correlations


4.15

Preface


First need to cut way back on the possible bond rotational angles

V                                                               
[image: image93.wmf]¥
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Set 
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Now we can compute <cos
[image: image100.wmf]f

> using a simple weighted sum instead of integrals:




<cos
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This model for the potential function is called the ROTATIONAL ISOMETRIC STATE (RIS) Approximation.

The RIS reduces the averaging process to a point where correlations can “easily” be handled.  However, this is not done by calculating <cos
[image: image102.wmf]f

>* directly.  Rather, conditional probabilities are enumerated by a statistical approach.  It turns out to be operationally simple if matrix algebra is used.

*Indeed a RIS calculation of <cos
[image: image103.wmf]f

> would be less accurate than a full evaluation…AND it would still not get you any correlation effects.

Correlation Bypass:  Quick & Dirty Explanation of how it works.  No details.

· If seriously interested in RIS, go to page 4.18

· If not, here’s the essence of it.

We wrote that <cos
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Note that: 1) other functions- e.g. <r2>- are also expressible in terms of  


[image: image105.wmf]f

.

But…they are functions of all the 
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          so….

e.g. 
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for bond 1                                         <r2> = 
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for bond 2              {
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etc.

2) The process of computing <f(
[image: image111.wmf]f

)> involves weighted and normalized averaging.

The weighting (numerator) means adding and multiplying at once.

The normalizing (denominator) means adding all the weights together.

3) A kind of mathematical operation that adds and multiplies at the same time is matrix multiplication.
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Our problem is that we want to somehow associate two adjacent bonds.  The probability of bond 2 being in a given state depends on the probability of its predecessor being in a given state.  There are three possible states (t, g+, g_).

Define:  
[image: image113.wmf]=
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probability that bond i is in state 
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if bond i-1 is in state 
[image: image115.wmf]"

"

b


u matrix for carbon-carbon bonds
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Since 
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leads to “pentane effect” crash, we can set those terms to zero.  The transition from any state to trans. is “normal;” set those terms to unity.  Let 
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represent the transition (probability) of 
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Now associate each bond in the chain with such a matrix.  The probability of the whole chain – its total weighted number of states—is related to: *

                                                         u1   u2   u3   u4….etc.


Such terms wind up providing the denominator of the average.  Such normalization terms are called partition function in Statistical Thermodynamics.


But how can we hope to do this matrix algebra?  Aren’t there zillions of bonds?  Sure, the matrix representation is a nice formal way to represent them, but we still get stuck with a zillion products to form.  Well, not quite.  Take the case of a chain with 1024 bonds.
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Ten easy steps!


*  loosely related to!

OK, but that just normalizes for us.  What about an average of some function of all the bonds?  

This is a much messier, but not really very complex, problem.  The solution again involves matrix manipulations of two kinds

1) Vector transformation algebra to convert bond vectors from one Cartesian system to the next (i.e. to project bond j onto bond 1)

2) More weighted sums.

By the time the problem is correctly assembled, the numerator grows from 3x3 matrix multiplications to 15x15.   These are big matrices, but the essential “scale up” (e.g. 1024 = 210) remains.  So the problem becomes tractable.

5) Long-range effects.  No matter what one does about to model the short-range effects, the long-range crashing still occurs.  Over these distance scales, one could model the chain as just spaghetti, and the effect is still there:  because pieces of spaghetti that are separated a long way from each other along the chain can still crash, and because two bits of spaghetti cannot really occupy the same space, there is an expansion.  For example, if you try to lay a piece of spaghetti onto a flat surface, it will jump over itself (going into the third dimension) when the strands cross.  
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This is the 
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What is 
[image: image126.wmf]2
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?


--We will see a Flory theory for it, interpreted by de Gennes


--But let’s start backwards, from the viewpoint of computer simulation
S.A.W. = Self-Avoiding Walk

· generate random chains in computer.

· Disallow all configurations where segments collide


· a lot of chains get rejected

· problem gets worse at large N
· The remaining satisfactory chains (no crashes) are bigger

· 
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or… <r2> ~ n1.2

or…v = 0.6 = 3/5



df = 1.7

· in other dimensions 
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(expansion is more severe in two dimensions)

These S.A.W. chains are non-Gaussian.  For the first time, we have a model that does not predict <r2> ~ n.

[image: image129.wmf]2
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doesn’t just depend on chain length

The 
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 condition creates a major problem for theory.  Luckily, there are conditions where you can force 
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.  Polymer solutions have the same sources of non-ideality as gas solutions, plus one other.





Polymers

Gases

Finite size                                       x                                x

Attraction                                       x                                x

Connectedness                               x                                no

Gases 
Recall the van der Waal’s eqn. for non-ideal gases

                                                  

                                              2b           
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The Boyle temperature is defined as the point where the excluded volume and the attractive forces cancel.


[image: image133.wmf]V

P
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 at TBoyle
Note:  even if you are not at TBoyle it is always possible to get a gas to behave ideally.  You must reduce the pressure or raise the temperature.

Polymers




At T = 
[image: image134.wmf]Q

attraction between segments just cancels out the excluded volume repulsions among the segments.
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You cannot force a polymer system to the ideal at temperatures other than 
[image: image137.wmf]Q

because you cannot disperse the monomers inside a coil region:  it’s always concentrated inside the chain.  So finding 
[image: image138.wmf]Q

is a great prize.

Irony:  concentrated polymers are ideal (concept due to Flory)                                         

It is also worth noting that very concentrated solutions of polymers (or polymer melts) behave ideally because a given chain has no room to expand.  Inter molecular interactions force Gaussian behavior.  


(There is no reason for chains to expand because, on doing so, it will merely encounter more chain elements.  True, they will be from different chains, but this matters little.)

Note also that the term 
[image: image139.wmf]Q

temperature presupposes a certain solvent.  One should really say 
[image: image140.wmf]Q

system:  it takes a coincidence of solvent, temperature and polymer.


e.g.  PS/ cyclohexane is a 
[image: image141.wmf]Q

system @ T
[image: image142.wmf]C
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(exact temp. will depend on impurities).

Good vs. Ideal



Q. What can be better than ideal?


A. Good!


[image: image143.wmf]Þ


”Ideal” refers to cancellation of entropic (volume) effects due to unfavorable enthalpic attractions.


[image: image144.wmf]Þ


“Good” means no unfavorable interactions, so the other nonideality (volume) dominates



                       Good solvent 
[image: image145.wmf]º

 Excluded Volume Effect

B) Estimating 
[image: image146.wmf]2
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 in Good Solvent, Excluded Volume Limit


See also de Gennes pp. 43-46

Repulsion

[image: image147.wmf]
· let there be n monomers

· let R = “some size parameter” (e.g. [Rg2]1/2or [<r2>]1/2)

then  
[image: image148.wmf]3
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 is the internal concentration
let the chain look like this



--Consider the ratio 
[image: image149.wmf]kT
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repulsion


--Should be proportional to 
[image: image150.wmf](
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--But this can’t be complete:  
[image: image151.wmf]kT

E

 is unitless but r.h.s. has units (volume)-2
--We need to multiply by (volume)2.  what to pick for those volumes?

--Answer:  v (monomer volume) and V (polymer volume)


Then if either of those is zero, 
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Elastic Term
(not present in van der Waals nonideal gas because hard spheres have no internal configurational entropy)

Stretching out a polymer chain causes a reduction in its entropy.  The chain will try to restore this entropy, acting much like a spring.  For small expansions the elastic energy of this “entropy spring” will be proportional to displacement squared.

(Hooke’s law:  
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there is not elastic energy


                                   This is the (size)2 before expansion 

                                   Also, it normalizes to make r.h.s. unitless
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define:  
[image: image160.wmf]Flory
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recall that b (i.e. bead radius) 
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(bond length)

Thus 
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So 
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i.e. 
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So 
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Or…
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                     for the first time we don’t get <r2> ~ n.

                                                    Not Gaussian any more

This term is 
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Actually, there are two errors in the foregoing:

1) Correlation is neglected.  Hence the full repulsive energy is much less than proportional to c2.

THIS THEORY OVERESTIMATES REPULSION

2) The restoring force is also overestimated.

A truer value would be 
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i.e., the spring is less strong because the real chain is expanded and wants to be.

THESE EFFECTS CANCEL! (Approximately)

Summary of Polymer Chain Statistics and Dimensions
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            where <r2>0 is called the “unperturbed” dimension 
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   (see “Loose End” Appendix, below)


Behavior Under Various Solvent Conditions

“Good Solvent” (i.e., excluded volume limit)
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“Theta” or “Ideal” or “Unperturbed” (i.e., cancellation of nonidealities)
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“Poor” or “Globule” Conditions (i.e., chain collapses on itself)
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APPENDIX:  IMPORTANT LOOSE END, Connection of <r2> to a measurable quantity.       


Conversion from <r2> to <s2>  (Proof that 
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(See Old Flory, pp. 428-431).

                                     

                                                  C


Define:   Si = vector connecting CM to ith element.


ri = vector from end to ith element

  


z = -S1 = vector from end to CM.

If all elements are same mass then:
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Note:      Si = ri – z            eq. B


Put eq. B into A ( 
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Eq. D      
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Now we must relate the sum 
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                                    Eq. B                                                                                
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                                        Eq. C above says 
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                                                        use eq. D
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   eq. E

At this point, we have essentially succeeded in transforming 
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into terms containing “end-to-i” type distances.

We need to contemplate the terms 
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Let rij = ri - rj
From law of cosines we have:
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                                                     angle between ri and rj
i.e. rij2 
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    eq. F

Thus, our expression for 
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(eqn. E) becomes:
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    eq. G

Recall…for a given conformation 
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Let us proceed with the freely jointed model.  We know what <rij2> is already.

Recall, for n bonds in the sub-molecule:
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  (can drop absolute value signs since j<i)


This is just:  
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The internal sum is just 
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Which is ~ 
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  for the large j values that dominate the sum.
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The remaining sum is:  
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 Which is ~ 
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at large values of n.  
So (drum roll, please):  
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This turns out to be true not only for freely jointed chains but for other Gaussian models (R2 ~ n) in the limit of large n.  Thus, any random chain in a theta solvent should be OK, no matter what C( is.  For chains in good solvents, the question boils down to whether or not the expansion for Rg is the same as for end-to-end size.  The last time I checked, the answer was not exactly, but probably close enough.  

APPENDIX:  A CONSEQUENCE OF POLYMER ENTROPY
If you heat a rubber band under tension (e.g. hang a weight on it first, then blow with hair dryer) it will shrink!  Most materials expand when heated.  Polymers do the opposite, because the heat energy excites the polymer strands, which then wiggle out of their extended (because of the tension) positions to explore conformations that are shorter, overall.  

This can be illustrated by the film below (to be added by some Legacy team of the future!) or by Feynmann’s entropy motor (which we hope someone will build).  
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Chain of n bonds 





Ergodic average:  (this space intentionally blank for your notes)





Sometimes, other symbols are used for < r ( r > ½ -- e.g., Tanford likes hav.
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These two commonly used symbols


mean the same thing
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bead 1


mass  m1





bead n + 1


mass mn+1





While < r ( r > ½ was defined in terms of massless bonds, Rg is defined in terms of chain elements with real masses.  
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Compare the age of the universe in seconds:





(1010 years) ( ( ( 107 seconds per year) =  ( 1017 seconds





			l1(l1 + l1(l2  + l1(l3 +...l1(ln +





< r ( r > =   	l2(l1 + l2(l2  + l2(l3 +….l2(ln +





l3(l1 + l3(l2  + l3(l3 +….l3(ln +








ln(l1 + ln(l2  + ln(l3 +….ln(ln +





An important equation!  It reads “r-squared equals n L squared”, something to be filed away in your brain along with “F equals m A” and “PV equals nRT”.  It is a common result of this “Gaussian” chain or “random walk” argument.  What’s the difference between this random flight chain and a drunk’s random walk?  There isn’t one.  These problems are common in physics.  Another example is the scattered electric field. The sound from multiple sources is related, but a little different.  





Kronecker Delta.  There is a traditional way to write the fact that li(lj = (li((lj(cosijis zero unless i = j.  We write li(lj = (li((lj(ij where ij is the “Kronecker delta” and universally understood to mean “zero unless i = j.
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This mnemonic, true for polystyrene, puts some teeth into our 


scaling relationships by giving an absolute number. 





Actual values: 	C( = 6.7 for polyethylene


		C( = 10 for polystyrene





It should make sense that C( is bigger for PS than for PE:  PS has those bulky sidechains that will require a preponderance of extended trans configurations.  





The term:  n – k = 1


        Or… k = n – 1


Could write:
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Get molecular models!





This is just an example of the simplification of RIS





Remember: cos (0) = 1
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The finite size of the gas atoms reduces the available volume.  B represents the volume of gas atoms.  A volume nB is excluded to the n + 1th gas atom.





Attraction (or repulsion if A is negative) affects the pressure, too.





It is possible for the attractive forces and excluded volume terms to the non-ideality to cancel out.  This is called the Theta Temperature and indicated by symbol 





Make diet analogy:  veggies and tofu are ideal.  Pizza and pie are good.





Be careful:  though it goes like c2, same as VDW attraction, this is a hardcore repulsion—really like excl. vol. entropy





  Eq. C





from measurement or model





FJ 





Correction for short-range


chemical details





Correction for long-range perturbation.  


Physical problem, 


"the excluded volume" effect





Unperturbed dimensions, <r2>o





2b 





bead: volume:  � EMBED Equation.3  ���
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Top 10 Reasons to Understand Macromolecular Dimensions**





10.  Proteins—the darn things change size before acting on a substrate.





9.  Fast way to follow polymerization of monomers, aggregation of polymers, binding of proteins or small molecules to vesicles, etc.





8.  $1B/year rests on getting size vs. mass relations to prove branching of polyolefins.





7.  Multi-viscosity motor oils use polymers that form structures whose size depends on temperature.





6.  Contractile polymers—simulating muscle—and DNA/drug transfection vesicles or nanoparticles





5.  How do I buy the best GPC column?





4.  Assessment of early stages of crystal formation for protein crystallography.  





3.  Do dendrimers change size when they bind metals?





2.  Is it Alzheimer’s yet?











And the number one reason to measure and understand polymer dimensions….





1.  Will that condom stop HIV virus?  








**in response to a student’s Daily Quiz query, “Why do we care?”
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Solid particles.  The radius of gyration concept maps easily into solids.  Each volume element at a particular position s is multiplied by the local density, (s) to give the local mass.  Then multiply by the squared distance from the center of mass and integrate over the whole volume:  
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The angular brackets have been removed:  since the object is a solid, there is no conformational averaging to do.  
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