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Viscoelasticity  
(with a comparison to light absorption: not as random as it may seem because there is just one physics) 

 
Introduction:  bridging that gap between chemistry and tangible materials. 
 
 Since we started a few days ago with morphology, we have been trying not to 
think like chemists or even molecular engineers.  That is, we have taken off the molecular 
glasses.  Now we are going to look at time-dependent perturbations of materials—a kind 
of mechanical spectroscopy.  Since it’s spectroscopy, let’s put on the chemical glasses for 
a little bit and see what turns up. 
 
 Consider an NMR.  The field precesses at a particular frequency (the Larmor 

frequency) which is typically 500 MHz in a modern NMR instrument.  To flip the field 
upside down we apply an electromagnetic (EM) field of the same frequency.  Higher or 
lower frequencies don’t work.  (For you NMR junkies, I am thinking of a continuous 
wave instrument, not an FT NMR).   
 
 What is the mechanical analog?  Let’s consider a gyroscope, which similarly 
precesses in Earth gravity.  To alter its orientation, we tap it with a hammer.  What works 
well is applying the hammer at the same frequency.  Too fast and the hammer doesn’t 
spend enough time interacting with the gyroscope.  Too slow and it never hits the 
gyroscope.  Thus, the relationship between normal chemical spectroscopy and 
mechanical spectroscopy is established…kind of.  We will now develop a more general 
formalism for beating up on physical objects, but we may expect to see some similarities 
to good old chemical spectroscopy.  And we may learn something new about that, too.   
 
Mechanical Spectroscopy 
 
 We studied viscosity of liquids early in the course, introducing Newton’s law for 
viscosity.  We also saw Hooke’s law in association with deGennes’ development of 2.  
Here they are: 
 

 

Precessing magnetic moment, 
comprised of zillions of small 
magnetic moments—e.g. on 
protons.   

x 

y 
x 

Liquid in shear 

Solid in extension 

   

F = k’x = kx/x 

x 

Eq. <1> 

Eq. <2> 



2 
 

These two equations represent viscous liquids (in shear) and elastic solids (in extension).  
Remember that  = F/A so apart from being normalized by area the first is really a force 
equation, as is the 2nd.  Also remember that  is a dimensionless deflection: 
 

 = x/y    Eq. <3> 
 
so… 
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   Eq. <4> 

 
Wow!  This makes it clear that our two equations for force are totally different.  
Newton’s law says that the force of viscosity is related to the time derivative of the 
deflection x.  Hooke’s law says that the force of stretching is related directly to x itself.  
This means the equations describe flat-out different phenomena.  No big surprise, 
because it means that solids and liquids are just different things.   
 
You can tell by the sound of them.   
 Solids: ping, click, bang (e.g. a bell) 
 Liquids:  slosh, flush, squish (e.g. milk) 

 
You can’t hear Jell-o wiggling, but an elephant might.  It vibrates at some low frequency 
like an elastic solid.  Put some in a bowl and you can feel it wiggle.  You will even find 
that well-aged jello vibrates at a higher frequency—more “ping”.  Yet it doesn’t wiggle 
for long; vibrations dampens away, as they would in a  liquid, say honey.  If we were to 
adopt that molecular view again, we would find that the water molecules move almost 
unimpeded through the gel….or the honey.   
 
Generalizing the mechanical response of things 
 
Let’s always write our forces as force per unit area—i.e., stress.  In shear, “area” means 
the area of the contact plates; in compression or elongation is means the cross-sectional 
area normal to the applied force.  By the way, there is such a thing as viscosity in 
extension (or compression).  The easiest way to think of this is to remember that viscosity 
is not only the coefficient between stress and rate of strain; in that Einstein picture we 
developed, it is also a coefficient of energy loss.  We continue to make strains 
dimensionless by dividing the displacement by some other length (y in shear; x in 
elongation).  Then we can write: 
 

 1Eelastic    (storage of energy)      Eq. <5> 

 
2Eviscous   (loss of energy)   Eq. <6> 

Jello-O  What’s this stuff? 
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Note that E1 and E2 don’t have the same units (E1 is Pa and E2 is Pas). Now imagine an 
experiment where the distortion of the object is applied sinusoidally.  Let’s say we have a 
100 mm bar of plastic and we clamp it at either end in a device driven by a cam that can 
extend it by 1 mm in a sinusoidal fashion.   
 

The strain (x/x) follows  
 
    = osin(t)   Eq. <7> 
 
where  is the circular frequency (i.e., 2 with  the actual frequency) and o is the 
maximum strain amplitude (1% in the case imagined above).  The cam and clamp 
assembly must exert a force per unit area of  to achieve the strain .  One might imagine 
a feedback loop, such that whatever stress is necessary will be provided to keep the strain 
to the prescribed sine form.  Thus, both  and  are known as functions of time.   
 
Now, here’s the important part.  The  required to maintain the desired strain is the sum 
of the elastic and viscous terms.   
 

)cos()sin( 2121 tEtEEE ooviscouselasticsum     Eq. <8> 

 
This is neat!  The total stress is partly due to the sine term and partly due to the cosine 
term.  So, now we need to understand how weighted sums of cosines and sines behave.  
That’s a good project for Excel, and you should now download a spreadsheet we 
designed to look at what happens (TanDelta.XLS in the "downloads" section).   
 
The results of fiddling with this Excel spreadsheet are: 
 

A weighted sum of sine and cosine waves also oscillates with frequency  but 
with a different phase, which depends on the relative magnitude of E1 and E2.   
 

In equation form, our Excel observations are consistent with the summed stress obeying: 
 

)sin(   tE osum   Eq. <9> 

 
where E (no subscript) is “some modulus” and  is the phase lag from the original 
sinewave.   
 

The phase lag  is a good indicator of the strength of the loss modulus E2 
compared to the storage modulus, E1.  When E2 << E1 (elastic solids) then  = 0.  When 
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E2 = E1 then  = 45o.  When E2 >> E1 (viscous liquids) then  = 90o.  We can pursue 
this further by rewriting the previous equation, taking advantage of the sine sum rule: 

 
)sin()cos()cos()sin(  tEtE oosum    Eq. <10> 

 
Comparing this to Eq. <8> reveals the relationship between E1 and E2 and the “some 
modulus” E.   
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Consistent with our Excel observations, this produces  = 45o when E2 = E1.  No one 
actually uses , though.  The commonly reported parameter is actually tan().  Note that 
the liquid state (more correctly, the dominance of viscous response over elastic) 
corresponds to tan() = .  The elastic limit corresponds to tan() = 0.   
 

tan() Physical meaning 
0 Elastic limit 
1 Balance 

 Viscous limit 

 

 
Complex Notation 
 
 Somewhere in your past, you should have encountered complex notation, 
complex variables, etc. in which we use the imaginary numbers like i=-1.  This greatly 
simplifies the discussion of periodic phenomena.  If you haven’t revisited the Argand 
diagram in a while, you might wish to.  If you never heard of it, try the internet!  With 
complex notation, we can just write: 
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Now we can define a complex modulus, E*: 
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*   Eq. <14> 

Other symbols.  For shear experiments, one often uses G instead of E.  Also, it 
is common to use primes instead of subscripts.  For example, G’ is a shear 
storage modulus and G’’ is a shear loss modulus.   
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But from our general knowledge of complex numbers, we know that: 
 

)sin()cos( zizeiz    (where z is anything).  Eq. <15> 

 
Thus, 

)sin(cos* 



iE

o

o       Eq. <16> 

 
This is just: 
 

21* iEEE         Eq. <17> 

 
What this shows is:  our separate concepts of storage modulus and loss modulus are 
unified in a single complex modulus!  The storage is the real part of the complex modulus 
and the loss is the complex part. The , the units are the same…Pascals (Pa).  
 
Denouement 
 
 This story began with a consideration of NMR spectra (could just as easily have 
been infrared). The point is that light is a way of beating up on molecules in the same 
way that mechanical devices are ways of deforming materials: in both cases, the problem 
is a driven, damped harmonic oscillator! Oh, sure…the absorption is best treated by 
quantum mechanical analogies of the driven, damped harmonic oscillator…but that is just 
a detail. We’ll end with an analogy to optical systems to drive this home.  
 
 The electric field of light can be expressed as a travelling wave: 
 

tiikx
olight eeEE        Eq. <18> 

 
The time part (eit) takes care of the rapid oscillations.  If you are standing still at some 
given point in space, the light field will oscillate as it races past you.  The space part takes 
care of phase arguments:  at a given instant of time, the field will be higher or lower 
depending on where you are, varying periodically over a distance .  The variable k 
describes the spatial frequency of the light:   
 

k = 2/    Eq. <19>

Now, the wavelength of light is the in vacuo value, divided by the refractive index: 
 

= o/n    Eq. <20> 
 

Thus: 
 

k = 2n/    Eq. <21>
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OK, so that’s the background--a quick recap of what you can see in any physics text.  The 
most interesting things happen when you let n be a complex variable: 
 

n* = n + i    Eq. <22>


This leads naturally to: 
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We can expand out the spatial part, remembering that i2 = -1:   
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What does this say?  As before, it says the electric field oscillates both in space and in 
time.  But it also now decays in space!   

 
That complex part of the refractive index is again the loss term.  We chose a symbol  for 
it in keeping with the usual chemical convention:  it is related to the absorptivity.  By 
analogy to our mechanical spectroscopy, we therefore see that the real part of the 
refractive index is elastic.  Transparent media are those in which light energy propagates 
elastically so that energy is not lost.  Absorptive media are “lossy”.   
 
The analogy between mechanical and visible spectra should now be…..um….transparent, 
but that is not all.  There are connections to electricity, too:  resistors are lossy and 
capacitors elastic.  Most real electrical networks are in-between—electrically 
viscoelastic? When you buy a capacitor, it comes with a tan() specification! 
 
 
 
 
 
 
 
 
 


x 
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http://www.datasheets360.com/part/detail/338lba035m2bc/-6511964411173125868?comp=6221 

 
 


	Mechanical Spectroscopy

	Generalizing the mechanical response of things

	Denouement




