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GENERAL REVIEW 
 
1st law: 
     dU  =  dq  +  dw 
  

Exact; path independent    Inexact (small symbol) 
 
 Change in the total energy U is sum of heat and work.  These effects combine to make 
dU independent of path. 
 
2nd law: 

   dS =
dqrev

T
 ≥   

T
dq  

 
 
 
Measures the randomness or dispersion of energy U.  There is a statistical approach and a true 
thermo approach to entropy.  The latter is a big pain but very intellectually satisfying (take Chem 
4596, if it is ever offered again). 
 
 STATISTICAL APPROACH:  use this to calculate the IDEAL ENTROPY 
 OF MIXING.  (This is nicely done in Van Holde, Ch. 1. &  many other books, too) 
 
 Let W = the number of ways to arrange N2  solute molecules and N1 solvent molecules 
is given by: 
 
  
 
 
 
 
 
 
 

  W = 
! N  !N
)!N +(N

21

21  =    
! N ! N

! N

2 1

 

 
 Explanation: 
 

A) Put on the N2 solutes first, one at a time: 
N sites for first of N2 identical solutes 
 

→  
2N

N  distinguishable ways 

 

N = 32 
N2 = 3 

define 
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  (N - 1) sites for next of N2-1 identical solutes 

 →  
1  - N

1 - N

2

 distinguishable ways 

 
 The numerator is the number of open sites remaining.  The denominator is the number of 
solute molecules not yet placed; it accounts for our inability to distinguish identical solutes. 
 
 We multiply these together for all solutes to get 
 

 W = 
! )N-(N ! N

! N

22

 ≡  
!  N ! N

! N

12

 

 
B) There is only one way to put on identical solvent molecules when all 

solutes have been placed.  Note that the final result is independent of how 
we label the molecules or whether we put molecule 1 or molecule 2 on the 
lattice first. 

 
 
For the more general case of multicomponent mixtures, 
 

 W = 
 ! N ! .  .  . !  NN

N!

n2 1 
    ; ∑

i
 = iNN  

 
Now, how should entropy S relate to W?  S is extensive; it should increase like N.  So S is 
clearly not proportional to W. 
 
Try the following: 
 
 
 S  =  k lnW 
 
      →  S  =  k [lnN! - lnN1! - lnN2 ! — …..] 
 
But ln N!

(N large)
 →       ~  N lnN - N 

 
- S  =  k  1(N  -   N  -  N  [N ln  ln )2N  -  2lnN  2(N  -  1)N  -  1N  -  ….] 

 =- k [N1  lnN1  +   N2  lnN2 + .... - N lnN] 

= - ....] +  N)  - 2N(2N  +  N)  - 1N(1k[N lnlnlnln  

 
S = - k[N1  lnx1  +  N2   lnx2  +  .....l] 
 

? 
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    where xi  =  
Ni
N

   

 
or…multiply and divide by  Na = Avogadro's number 
 
    S =  - nR∑

i
 ix ix ln  

  n = mole#; R  = gas constant 
 
Since xi  < 1, S is positive, as required.  What is ∆Smix ?  Prior to mixing you have W = 1 (1 
way to arrange solute & solvent if unmixed; S before mixing = k ln1  =  0). 
 

 ∆Smix  = - nR∑
i

 x i  lnxi  

 
Note: 

• this is an approximation: S = 0 only at absolute zero (0 K). 
• simple n1 behavior of S (S = extensive property) 
• bad thing about entropy is that it has the spontaneity condition entropy of universe must 

increase. 
• means you must always consider everything. 

 
 
Automatic Spontaneity Functions 
 
It turns out that for a spontaneous reaction: 
 

 dSsys ≥     
dqsys

Tsys  

 
Despite the "sys" superscript, the latter term (dqsys ) is actually related to the surroundings—i.e., 
the universe.  Also, q is not a state function.  However, under certain conditions q behaves like a 
state function and then we can invent more convenient state functions: 
 
1.  Constant Temperature and Volume 
 

Under these conditions, q behaves like U: 
if dU = dq  +  dw 
And dw = -pdV (only) 
 
Then dq = dU 
 
So dS  ≥   dU/T = spontaneity condition (T, V const; pV work only) 
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or…dU - TdS  ≤   0 
 
Define:  A = U - TS 
   dA = dU - TdS -  SdT 
Note that A = state function. 
With this definition, the NEW SPONTANEITY CONDITION for const. T & V is: 
 dA ≤  0  (T, V constant; pdV only work) 
 

2. Constant Pressure and Temperature 
Heat may be replaced by enthalpy at constant T & p; 
dq → dH 
 
        
proof:  H = U  +  pV; dH  =  dq  - Vdp  +  pdV  +  pdV  
 
TdS  ≥   dq →  TdS  ≥   dH 
 

 or… dH  -  TdS  ≤   0 
 
 Define G  =  H - TS; Note G = State Function 
 dG  =  dH -TdS - SdT  ≤   0 

The NEW SPONTANEITY CONDITION is: 
 dG  ≤   0  p, T const; no non—pV work 
 
Remarks on A and G {Utility beyond just being spontaneity conditions, etc…} 
  

A⇔Arbeit ("work", in German) 
 
1. A measures the maximum work which a given process can do: 

dA = dwmax. 
2. There is a tendency to say dA  ≤   0 because dU  ≤   0 and dS  ≥   0 inherently seem to 

lead to greater stability.  This is not really accurate.  The condition dA  ≤   0 really is 
just a restatement of the one true spontaneity condition  (∆Suniv ≥   0) for V = 
const.; T = const. And no non-pV work. 

 
 G ⇔  Gibbs ("genius" in any language) 

1. G measures the maximum non-pV work.  It is of interest to generation of electricity 
and other forms of non pV work (i.e., useful work).  

 
dG  =  dH  -  TdS  -  SdT 
       = dU  +  d(PV) -  TdS  -  SdT 
       = dq  +  dw  +  pdV  +  Vdp  -  TdS  -  SdT 

  if reversible: 
   TdS = dq →  
   max w=   w→  

 cancel 0 



   

Thermodynamics Review 6 

   
then dG = dwmax  +  pdV  +  Vdp  -  SdT 
Now… dwmax  =  - pdV  +  dwe,max; dwe,max = non pV work 

 
 maxe,dw  =dG    →  +  Vdp  -  SdT 

 maxe,constant Tp, dw  = dG  
This result, which we used reversible conditions to derive, is not actually reliant on 
reversible reactions because dG = state function. 
 
2. Same remark as for A: dG  ≤   0 is an expression (at const T,P) of ∆Suniv  ≥   0. 

 
 
 
SOLUTION THERMODYNAMICS OF ORDINARY SMALL MOLECULES 
 
We already have seen one important quantity, ∆Smix, in our reintroduction to entropy by 
statistical approach.  We need other elements, and we begin with the simplest possible system 
ideal gases. 
 
Ideal Gas 

We begin by considering a pure gas.  In a lattice formalism, this is a "mixture" of "point 
particles" with vacuum.  What is its free energy, G, at a given temperature? 

 
 G will depend on the pressure: 

 G = H  -  TS  =  G (T,P) 
 dG = dH  -  d(TS) 
  = d (U  +  PV) - d(TS) 
  = dU  +  d(PV) - d(TS), but dU  =  TdS  -  pdV 
 so… dG  =  Vdp  -  SdT 

 
 For ideal gas V  =  

nRT
P

 

 then  dG  =  VdP - SdT 
 
  =  nRT (

dP
P

)  - SdT ; now assume constant T and integrate: 

 

  G(P)  =  G(P°)  +  nRT  ln(
P
P°

) 

 
In general, define:  µ i  = chemical potential of species i  
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   µ i =  
ijnPT ≠










,,in
G

∂
∂  

 

For a pure gas  = 
G
n

 

 

 µ = µ(P°)  +  RT  ln (
P
P°

) Pure Ideal Gas; Const.T 

 
 
How do we choose P°?  We could have any choice we wanted, but usually P° is taken as 1 atm, 
in which case we write µ = µ°  +  RTlnP. 
 
Nonideal Gases 
 Let there be some function, ƒ = fugacity which satisfies: 
 

    µ = µo  +  RTln(
f

P°
) 

even when the gas is not ideal 
Note: 1)   for ideal gas ƒ = P 

2)  fugacity is defined to make this equation true 
3) The fugacity requires that µ° have a known role in order to be useful 

 
What is the standard state of a Real Gas? 
let us write  ƒ = γ  P 
   γ = dimensionless fugacity 
   γ = a function of P 
   (γ = 1 for an ideal gas) 
 

Then: µ = µ°  +  RT  ln(
f

P°
) ; ƒ = γ P 

 

= µ°  +  RT  ln(
P
P°

)  +  RT  ln  γ 

 Ideal Term↑    ↑Nonideal Term 
 
Now: µ will = µ° when 2 conditions are met simultaneoulsy: 
 

1) P = P° = 1 atm (usually) 
AND 2) γ = 1 
 
Now, most gases are not exactly ideal at P = 1 atm (γ ≠ 1 at P = 1 atm). 
So, for a real gas, when will µ = µ°? 

• Terse answer:  Never! 
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• Detailed Answer: µ will equal µ° when the real gas is placed in some hypothetical state 
where P = P° and γ = 1 simultaneously. 

• Alternate Statement: The (hypothetical) standard state is the gas at 1 atm pressure and 
behaving ideally. 

• One more time:  Even if the gas is non—ideal at Pº, the standard state is still that of this 
gas behaving ideally at Pº.   

 
We will soon return to the idea of a standard state for fluids.  First, we need more experience 
with Partial Molar Quantities.   
 
PARTIAL MOLAR QUANTITIES 
Method of Intercepts 
 Use volume as most obvious example.  Could also use G, A, H, U, S, etc. 
 Consider Binary Mixture case (mixture of a & b): 

   
n
V = avgV  ; n = na  +  nb  

 

   
n
an

  =  ax  ; xb  =   
nb
n

 

 

Define: bV  = (
bn 

V 
∂
∂ )n ba≠ ,T,P ; Note Vb  = Vb  (xa, xb ) 

 (i.e., bV  is a function of composition) 
 
We imagine bV  to be the amount by which an ocean of a,b mixture expands upon addition of 
one mole of b.  na  is unchanged and xb  is virtually unchanged. 
But V = nVavg  

⇒ Vb  = (
∂

∂nb
nVavg ) PT, ,na

 

 

⇒ n (
∂Vavg
∂ n b

) 
PT ,,an   +  Vavg (

∂ n
∂ n b

)
PT,,an

 

 
 
Use Chain rule: 
 

 (
 bn  

avg V

∂

∂
) = (

b x 
avg V 

∂

∂
)(

∂ x b
∂ n b

) 
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∂

∂ n b
  (

n b
n b  +   n a

)  =  
n b  +  n a  - n b

(n b  +   n a ) 2
  =  

x a
n

 

 
 

⇒   V b  = n  (
∂ V avg

∂ x b
)  (

x a
n

)  +  Vavg  

 

V =  avgV ⇒ b  -  xa  (
∂ V avg

∂ x b
) 

 

or… Vavg   =  V b   +  xa  (
∂ V avg

∂ x a
) 

 
These equations suggest an "intercept method" for determining The Partial Specific Volume: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

At xa
' , Vavg  = Vavg ( xa

' )  =  V b   +  Xa  (
∂ V avg

∂ x a
) 

A similar equation holds for component a: 
 

   Vavg  = V a   +  xb  (
∂ V avg

∂ x b
) 

This allows us to identify the point V a  at right. 

xa= 0  xa= 1

V b (xa
' )

  

Vavg (xa
' ) 

xa' 

V a (xa
' )

  

Vavg 
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So, in order to determine V a  and V b  at a given composition, we determine Vavg  over a range 

of compositions. 
 
Note that Va   ( a'x ) ≠ Va  ( a"x ) in general unless a'x  = a"x . 
 

I.E. Va  and V b  depend on xa !! 
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Important!  The intercepts equation/method works for any state function not just volume. 
 

3 Basic Equations 
 

Besides the intercepts relation, there are 3 more important relations: 
 
1)             dV = V 1 dn1  +  V 2  dn2  

2)  V = V1n1  +  V 2 n2  or…. Vavg  = V 1x1  +  V 2 x2  = V/n 

3)  n1dV1  +  n2dV2 =  0 
{Note:  we switched from "a, b" to "1, 2" subscripts.  Ordinarily, 1 = solvent and 2 = solute.} 
 
These are, like intercept equations, MATHEMATICAL facts.  We will prove them as such, 
again staying in the binary (component 1, component 2) limit to conserve space.  There are 
analogous expressions for solutions with any number of components. 
 
Prove eq. 1 
   

The volume V depends on T,P,n1,n2  
 V = V(T,P, n1,n2 ) 

dV = (
∂ V
∂ T

) n1,n2,P
dT   +  (

∂ V
∂ P

) n1,n2,T
dP   +  (

∂ V
∂ n1

) n 2,T, P
dn1   +  (

∂ V
∂ n 2

) n1,T, P
dn2  

 
   dV = V 1 dn 1  +  V 2  dn2   Eq. 1 
   (T, P constant) 
 
Prove eq. 2 
 

This isn't as obvious as it looks, becauseV 1 and V 2  are, in general functions of x1, x2 .  
But we can imagine "building" the solution by holding composition (x1, x2 ) constant 
while integrating over n, the total # of molecules.  We perform a volume-building integral  
 

V = ∫
V

dV
0

 = ∫∫ +
21

0
22

0
11

nn

dnVdnV    

 
at constant composition x1, x2(= 1 - x1).  This is like adding little aliquots of a premixed 

solution and it means that 1V  and 2V  are constants so we immediately see that Eq. 2 is 
true.  But, V is a state of function, so it wouldn't matter how we actually make the 
solution up.  Thus, Eq. 2 is generally true.   
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Prove Eq. 3 
 
Use eq. 1: ⇒ dV = V 1 dn1  +  V 2  dn2  
 
Now eq. 2 says: V = V 1 n1  +  V 1 n2  
 

⇒  dV = V 1 dn1  +  n1dV 1   +  V 1 dn2   +  n2  dV2  
 
Comparing the 2 boxed eqns. shows that: 
 
  +  n1d 1V   + n2  dV 2  = 0  Equation 3 
 
What this shows is: 
 
 Any change in V 1 is directly tied to a change in V2 : 
 

    
dV1
dV2

  = - (
n 2
n 1

) 

 
 NOTE:  for more than 2 components, the relationship is not as simple. 
 

Summary 
 
 Four things to note 

1) Equations 1, 2, 3 and the intercept equation are mathematically exact. 
2) They work for any Thermodynamic state function, not just volume. 
3) They aren't limited to binary mixtures.  They can be extended to many 

components. 
4) There is one very important example of the type 3 equation: 

 
Gibbs - Duhem Equation: 
 
  Σni d 0 = iµ  

{mnemonic device: Duhem   ⇔ dµ} 
 

Important Example of type 2 eq. 
 

 G = Σ
i

 ni  µi   where µi  = (
∂ G
∂ ni

)n j ≠ i;P;T  
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One last thing on partial quantities: 
  
They are often defined as partial "specific" quantities where specific means to use weight in this 
substance.  Usually use lower case letters for these: 
e.g. 
 

     v 2 = (
2g 

V 
∂
∂ )g1, T,P  

i.e. the change in volume for a given change in weight (g2) of species 2 at T,P constant and 
holding g1 constant. 
  

Example: v 2 ∼ 
gm

m1 0.73  for most proteins (at infinite dilution). 
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MIXING THERMO 
 
1)   Ideal Mixtures 
 

ideal mix, H ∆  = 0 
 

ideal mix,S ∆  = – nR Σ
i

xi  ln  xi  

 
 
∴ ideal mix,G ∆  = nRT  Σ

i
xi  ln  xi  

 
Note that ∆G  <  0 

 
⇒Ideal mixtures always mix 

∆Vmix  =  (
∂ ∆ G

∂ P
)na, nb, T   ⇒ 0 

 
The mixing in an ideal system is driven by entropy. 

 
2) Real Mixtures 
 Activity in Real Mixtures is Like Fugacity in Real Gases: 
 
 o  =  ii µµ   +  RT  ln ai  
  

ai   =  "activity" of ith species is defined by this equation. 
  

ai   = γ i  xi   or  γ i  (mi /mi
o ) an alternate possibility often used  for 

      the solute species; m = molality =  
      moles solute/kg solvent; mi

o  = 1 (usually). 
 
 Note the units (i.e. lack thereof) of both the activity and activity coefficients. 
  

Let A  ⇒ Solvent 
  B  ⇒ Solute 
Solvent 
 a A  =   γ A x A;  γ ⇒  1 in ideal limit for solvent 
 
   i.e. γ  ⇒  1  as  xA  ⇒  1 
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This is called the Raoult law limit because you can trace it back through the vapor phrase 
(presumed in equilibrium with liquid solvent) and relate it by Raoult's law to the gas 
expression:  µ  =   µo  +   RT  ln  (p /po ). 

 
 
Solute 
 
 aB  =   γ B xB;  γ ⇒  1 in ideal solute limit, which is xB  →  0. 

or 

 )/mBm
( B =  Ba o

Bγ  i. e. γ  ⇒ 1  as   xB ⇒ 0. 
 

This is called the Henry law limit even when the solute is not volatile.   
 
Meaning of Standard State 
 
 Solvent 
  o

AA   =  µµ   +  RT  ln  γ  xA  
   

as 1     1,    Ax ⇒⇒ γ  and:  o
AA   =  µµ   @  1 = Ax  

  
The standard state of solvent is pure solvent.  (If you were fussy you might wish to 
specify:  pure solvent in equilibrium with its vapor.  Not really required, but does 
emphasize the Raoult's law nomenclature.) 

 
This is a realistic, achievable standard state. 

 
Solute 
 

The situation for the solute is analogous to the standard state considerations of the 
nonideal gas.  The system will be in its standard state when 2 conditions are met: 

 
5) γ B  =  1 

AND  2) o
Bm  =  Bm  = 

1 mole
kg solvent

(usually) 

 
Such a state may or may not really exist.  A hypothetical standard state, where one is at 
unit molality and the nonidealities are nil:  γ = 1.  Note that the "activity" could be viewed 
as phenomenological because we haven't considered why γ  ≠  1 in any serious, 
microscopic way.  We shall do so later.   
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Regular Solution/Phase Separation in Real Mixtures 
 
 ∆ H mix ≠   0  
  

∆ Smix  =  ideal  =  –n R [ ]B  x  B  x + A  x   Ax ln  ln  
  

∆ G mix   =   ∆ H  —  T  ideal mix,S ∆  

 
A system may separate into 2 phases (e.g. 2 liquid phases with different compositions) 
when it becomes possible for all the components in each of the 2 phases to have the same 
chemical potential.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In the β phase as drawn, xA  ∼  0.85 

In the α phase as drawn, xA ∼  0.10 
 

But µ A (x A β )  =   µ A  (xA
α ) 

 
 ) A(x  B   =  ) A(x  B 

αµµ β  
 
 

µB– µB
o  

∆Gmix, avg Points of co-tangency,
 NOT minima 

= RTlnaB 

1 0 

Aµ – o
Aµ  

XA
α XA

β XA 
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There is no way for an ideal solution to phase separate.  That is because the free energy of 
mixing is:  ∆ S mix  = - R[n A ln x A  +  n B  ln  x B].  This function has no wrinkles. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
But the regular solution might or might not phase separate, depending on what wrinkles the 
∆Hmix function introduces.  It is easy to imagine how this might happen (stoichiometric mixtures 
of solvent and solute that result in complexes with specific structures and heats of mixing).  Even 
less specific interactions can produce the needed wrinkles.  The requisite thing is a ∆Gmix with a 
point of co-tangency.  This requires two points of inflection, as shown.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Energy  

0 

mixG ∆

mix H ∆

0 > S  T ∆

0 1 XB →

Co-tangency points 

Inflections 

Energy 

what RT(xAlnxA + xBlnxB) looks like 

0

∆ G ≤  0  

∆ H =  0

T ∆ S >  0 

0 1 XB →



   

Thermodynamics Review 18 

Moreover, you have a ∆Gmix plot like the one shown for each temperature. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The necessary condition for phase separation is that two inflection points (*) occur at some 
temperature.  This ensures that 2 points of common tangency exist.  At the critical temperature, 
only one inflection occurs.  If we assemble the points of common tangency ( ↑ ) and the 
inflection points at various temperatures we produce a phase diagram: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0 1 XB →

T 

spinodal = * ↑= binodal 

Tc 

T2=Tc 

T4 

T3

0 1 XB →

T1 = lowest

*

* *↑ ↑

**↑ ↑

↑ 

∆Gmix,avg 
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1)  Above the solid curve ⇒ 1 phase only 
 
2)  Anywhere under the solid line phase separation occurs.  This is called the Binodal or "cloud 
point" curve.  (Reason:  phase separated systems are often turbid or cloudy:  compare really 
shook up oil/vinegar to either fluid separately). 
 

2. However, the solid curve says nothing about the rate at which phase 
separation occurs.  In fact, between the solid & dashed curves, the system is 
actually metastable.  It will take a while for phase separation to happen.  How 
long?  For polymers, the transition may be delayed essentially forever.  
Metastable polymer systems can act almost as if they are stable.  Not always, 
but sometimes.   

 
3. Under the dashed (or spinodal) curve ⇒ total instability.  Under the spinodal 

curve, phase separation begins immediately.  For small molecules, this often 
decomposes the solution into its components almost instantly (seconds).  For 
polymers, it may take hours or longer.   

 
4. The final result:  if you ever do reach real equilibrium, the final result is 

always given by the binodal curve:  two distinct phases.  Imagine fully 
separated oil (with a tiny bit of water in it) and vinegar (with a tiny bit of oil in 
it).  Polymers often get "trapped" or "frustrated" en route to that fully-
separated state.  This results in neat nanoscale morphologies and some 
interesting technical applications (such as filters).   

 
Lever Rule 
The fact that a phase separation occurs says nothing about how much material goes into each 
phase.  This, however, is known and it is called the lever rule: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0 1 

XB →

T 

↑  = binodal 

α
BX  o

BX β
BX

lα lβ 
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If: xB
o  = overall (or bulk) composition of mixture 

 
 xB

α  = xB in α phase 
 
 xB

β  = xB in β phase 
 
 lα  =  x B

α  — 
  
xB

o   
 
 lβ  =  xB

β  — x
  B

o   

 
 Then 
 
   nα   lα   =   nβ lβ ; n  =  #  moles  

 
What it means:  near a phase boundary, almost all of the material (i.e. sample) will be in the 
nearby phase.    
 
 e.g.  Suppose A is lighter than B 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1 0 1 

T 

α
Bx  o

Bx  β
Bx  

α 

β 

0 α
Bx  o

Bx  β
Bx  

α 

β 
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EQUILIBRIUM 
 
 Recall that (I.E. from some previous class; see any PChem book) 
 

 ∆ G =  ∆ G°  +  RT  ln 
II prod
II react

 

 
 where  II prod = II

i
ai ;  products 

 
   IIreact  = II

i
ai ; reactants 

 
   (ai  = activity of i th  species) 
 
 e.g. for A + B ↔  2C 
 
 II prod = aC

2  

 
 IIreact  = aA  aB 
 
At equilibrium ∆ G = 0 

2) ∆ G °  =  - RT  ln Keq  

 

where Keq = 
II prod
II react

 

 
For now there are 2 things we want to say: 

2) ∆ G° can be measured this way by measuring K eq . 

3) It is the ∆G for the standard state, ∆ G°, that one obtain.  I.E., in many cases it 
is ∆ G for hypothetical reaction conditions.  This is the undesirable but 
unavoidable consequence of never having an absolute energy scale. Energy is 
always relative.   
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COLLIGATIVE PROPERTIES 
 
General Effects of Entropically Reduced Chemical Potential 
 
 Vapor Pressure Lowering 
 Freezing Point Depression 
 Boiling Point Elevation 
 Osmotic Pressure 
 
 All have reduced potential of solvent in common: 
 
  µ1  =   µ1°  +   RT  ln  x1 
        
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The reason the µ vs. T diagram looks like this is: 
 

dG = VdP - SdT 
 

  ➭  - S = (
T
G

∂
∂ )P   or… (

∂µ
∂T

) P  = - S  

 
 
 
1) This says slope of µ vs. T is always negative, because S is always positive.   

Tf        Tf, pure                  Tb, pure Tb 
T 

µ1 

≤  0 
this term is always negative, so chemical potential 
is reduced compared to pure solvent.   
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2) Since Sgas  > S liq  > Ssolid , the magnitude of the slope increases in the order: solid; 

liquid; vapor. 
3) As a natural consequence, we can see that a mixture (i.e., impure solvent) which has 

lower µ1 = µ1  
o   +  RT  ln x1  will freeze at lower T and boil at higher T. 

 
Qualitative reasoning why this makes sense: 
 

• A liquid freezes because in so doing the entropy of the universe is increased.  If a 2nd 
component is present, there is the extra entropy of mixing in the system, so the universe can 
wait.   

• A liquid boils because in doing, the entropy of the universe (and, in this case, the system 
itself) is increased.  If a second component is present to lower, the potential of the solvent 
then one has to work harder to raise it to a point where the gas has more entropyi.e., raise 
T. 

 
4) Vapor pressure lowering:  the liquid is made more stable; hence, there is less need to 

have material in the gaseous state to improve the universe's entropy picture.   
 
5) Osmotic Pressure 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
What happens? 
 The solvent goes to the B chamber because potential there is lower. 
 
 µ1

B = 
  
µ1

o   +  RT  ln  x1
B 

 

h 

Semipermeable Membrane

Solvent Solvent 
+ Solute

INITIAL 
A  B 

FINAL  
A  B 
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 µ1
A  = 

  
µ1

o  
Why doesn't the pressure continue indefinitely? 
Because pressure builds up on the right side (Chamber B).  This causes it to stop. 
1  ⇒  solvent      A  ⇒  l.h.s. of chamber 
2  ⇒  solute      B  ⇒  r.h.s. of chamber 
 
At equilibrium 
 
 µ1

A  = µ1
B 

 

  
µ1

o   = µ1
B  +  ∫  dµ1

p + π
 

       p = ambient 
 
{note: µ1

B = 
  
µ1

o   -  RT  ln  x1
B.  But don't carry it into expression yet.} 

 
But:  dµ1 =  V 1  dP (at T  =  constant)   (From dG = VdP — SdT) 
 
Also, most liquids are virtually incompressible and the composition changes as one goes form P 
to P +  π are usually trivial, so V 1 ~ constant ~ V1  

o .  (Pure material indicated by no bar.  Other 
notations possible.  Richards:  V1*). 
 
∴ 

  
µ1

o  = µ1
B  +  V1   

o  π 
 

or…..  π = 
o

o

1V
1 -  1

Bµµ
 

  
 
 

 
Now use µ1

B = 
  
µ1

o   +  RT  ln  x1
B 

 

⇒π  =  
  

−RT  ln  x1
B

V1
o  

 
But x1

B ~ 1  - B
2x  and let us drop the chamber superscript 

 
Use  ln (1 - x2

B) ≅ - x2
B 

Extremely IMPORTANT!  How to measure chemical potential. 
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 ⇒ π ~ 

  

RT  x 2
V 1 o

  

But x2  = 
n 2

n 2  +   n1
  

dilute
limit

   ~  
n2
n1

 

 

5. π  ~  
o 1V  1n

2n  RT
 

 

6. π  =  
V

RT  2n
 

 
 
 
 

But 2n = 
2M
2g

 where 2g  is grams of solute 

 

 ⇒ π  =  
V  2M

RT  2g
  =  

2M
T R c  

where c =  
V
2g

 = concentration as wt./vol. (gram/ml for example) 

  
This is ideal behavior because we started with 

 
µ 1  =   µ1

o   +  RT  ln  x1 
To handle nonidealities you could invoke the usual activity stuff.  (See, for example, Tanford).  
However, another formalism is more commonly used instead.  In this approach one forces a 
polynomial to µ.  From the Latin, this approach is called a virial expression. 
 

4) =  µ°  -  RT  o
1V   c  [

2

1
M

 +  cA2   +  c2A3  +  ……] 

 
{The virial coefficients are often given the symbol Bi  instead or in some books 
A2  = B;  A3  =  C;  etc….] 
 
The virial coefficients are easily obtained experimentally, but also have theoretical importance:  
they contain the combined effects of finite solute size and mutual attraction.  Note that the first 
virial coefficient is 1/M2 , which we get by manipulations just like those performed for π: 

Van't Hoft law:  Like Ideal Gas law! 
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ln x1 ≅  - x2  ≅   
1n
2n-

 = 
V

2n 1V- o
 = 

2

o
1

M
cV-  

 
 
Since the expression 
 

   
o

o

 1V

   -   1   
µµ

π =  

is general we can write immediately a virial expression for π: 
 

 π = cRT   [ ......  +  3A2c  +  2cA  + 
M
1

2
] 

 
Osmotic Pressure Plots 
 

  
π
c

 = RT  [ .......  +  c2A  +  
M
1

2
] 

 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
Note 4 practical limitations of Osmometry: 

3) Membrane must not pass macromolecule:  means can't do very low molecular weights (≤ 
10,000). 

4) Membrane must not be degraded by solvent. 
5) As M2  goes up π goes down to levels which eventually become unmeasurable.  As a 

practical limit, measurements are hard above ~ 300,000 but you occasionally see higher. 
6) This experiment is a total pain in the neck. 

 

RT
M2

π
c

 

RTA2

c 
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Finally, it is easy to show that no other colligative method is as sensitive as membrane 
osmometry.  (One variant, Vapor Pressure Osmometry, is nice for very low MW's ≤ 20,000). 
 


