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I. INTRODUCTION 

Much has been written concerning the thermodynamic properties of solutions! 
yet there has been but little work reported (2,4,6,7,9,18) on the dependence of 
these propezties on the sizes of the component molecules and still less dealing 
with the effect of molecular shape and flexibility. Hildebrand (8, IO), it is true, 
has dealt with the special case of solutions of rod-like molecules of Merent  
lengths; Fowler and Rushbrooke (3) and Chang (1, 2) have treated the case of 
a solution containing spherical molecules of one kind and elongated double-sized 
molecules of another; and Meyer (15, 16) m d  Haller (5) have discussed, pri- 
marily in a qualitative manner, solutions of long-chain compounds in solvents 
composed of small molecules. In this paper, a more quantitative theoretical 
treatment of such solutions will be described. The procedure is an extension 
of that given by Fowler and Rushbrooke for their simpler case. 

Raoult’s law, according to which the activity of each component of a solution 
is equal to its mole fraction, holds for solutions for which the total heat content 
does not change as the pure liquid components are mixed, if ASH, the entropy 
change (per mole) on mixing has the value 

computed statistically (2) on the ammption of a completely random distribu- 
tion of the two kinds of molecules in the solution. In equation 1, R is the gas 
constant per mole and N A  and NB are the numbers of molecules of the two 
species. 

Deviations from Raoult’s law have, quite properly, usually been attributed 
(7) to differences in the energies of interaction between the different molecular 
species-i.e., to effects related to the heat of mixing. It seems reasonable, 
however, that, in solutions of long, flexible chain molecules, deviations in the 
entropy of mixing from that given by equation 1 may be even more important. 
This will be shown to be the case. 

Time and space will permit only an outline of the procedure and a few of the 
results to be given here. Details will be presented later. 

I Presented at the Eighteenth Colloid Symposium, which waa held at Cornel1 University, 
Ithaca, New York, June 19-21,1941. A preliminary note on the subjeot haa already been 
published (reference 13). 

* Communication No. 812 from the Kodak Research Laboratories. 



152 U U R I C E  L. HUGGINS 

11. CALCULATION OF THE ACTIVITIES 

Let us consider a hypothetical solution containing N g  spherical molecules and 
N A  chain molecules, each of the latter consisting of n submolecules, equal in 
size and shape to a single molecule of type B. We assume the volume change on 
mixing and the heat (or energy) of mixing to be zero. We treat the solution 
statistically as if it were a solid solution, having N g  + nNA sites for €3 molecules 
or A submolecules. The A molecules are first added (hypothetically) one a t  

, a time, then the B molecules, counting the number of different ways in which 
each molecule or submolecule can be added and multiplying these numbers 
together to obtain the total number of configurations. 

Submolecule 1 of AI (the first A molecule) can be placed in any of N B  + n N A  
sites. Submolecule 2 of this molecule then has a number of alternatives, z ,  
equal to the coordination number. Submolecule 3 has y alternatives, where 
y equals z - 1 if there is complete flexibility at the joint between submolecules 
2 and 3 .  (With actual molecules, y would be expected to differ considerably 
from z - 1 .  A comparison of experimental and theoretical entropies (12) for 
gaseous normal paraffins a t  25°C. leads to an effective average value for y of 
about 24 in these compounds.) Submolecule 4 also has y alternatives, as has 
each of the remaining submolecules of AI, provided we neglect the blocking of 
a small fraction of the othefwise possible positions by already placed submole- 
cules of this molecule. (This intramolecular blocking will be taken into con- 
sideration in the more detailed treatment; in effect, it merely reduces the average 
value of y slightly.) 

Submolecule 1 of molecule A2 has N B  + nNA - n sites available. Sub- 
molecule 2 of AI has z possible sites, provided submolecule 1 is adjacent to no 
previously occupied sites; it has z - 1 alternatives, if submolecule 1 is adjacent 
to one previously occupied site; z - 2 alternatives, if submolecule 1 is adjacent 
to two previously occupied sites, etc. The average number of alternatives for 
submolecule 2 is z(1 - f~), where fi is the chance that any given otherwise 
available site is already occupied. 

.Submolecule 3 (or any other submolecule) of molecule A2 likewise has y(1 - f2) 
alternatives, on the average. In general, for any molecule A,, submolecule 1 
has N g  + n N A  - (s - l ) n  alternatives, submolecule 2 has (on the average) 
z(1 - j.) alternatives, and each of the 7t - 2 other submolecules has y(1  - fi) 
alternatives. (Certain complications, important only for small values of z and 
y, are here neglected.) 

To obtain the number of digerent configurations for the molecules, one must 
divide the total number of configurations, computed in the manner described, 
by NA! and by uN*, where the symmetry number, (I, has the value 2 if A is a 
diatomic or triatomic molecule with both ends alike. For longer chains, u can 
be put equal to I, with but little error. 

After the addition of all the A molecules, the remaining sites are filled with 
the B molecules. These introduce no increase in the number of distinguishable 
configurations. 
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The total number of different configurations for the system is computed (for 
large y and z )  to be 

n-1 e + NA)! (NB + n N A ) "  NBnN*zN*y(n-z)N* 

(2) 
NB 

n-1 a =  
('VB)!NAI(NB)T n exp [(n - l )NA]CN* 

The entropy (s) associated with these alternative configurations is given by 

S 5 = 1n 4, = (NB + N A )  In (NB + n N A )  - N B  h N B  

- N A  In NA + NA In ( z / u )  + (n - ~ ) N A  In y - (n - I ) N A  (3) 
Putting NA = 0, we obtain SB = 0 for 

For pure liquid A, on putting N B  = 0, we obtain 
where k is the Boltzmann constant. 
this entropy in pure liquid B. 

k 5 = N A  In (nz /u )  + (n - 2)NA In y - (n - I)NA (4) 

The entropy of mixing, divided by k ,  is 

The activities of the components of the solution are then 

N~ and NA denote mole fractions, while N: and N: denote volume fractions. 
These expressions are mutually consistent with each other, satisfying the well- 
known Gibbs-Duhem-Margules relationship. For n = 2, they agree with the 
results previously obtained by Chang (1, 2). 

Figure 1 shows the variation of the activities (as given by these equations) 
with the mole fractions and with the number (n) of submolecules in the chain. 
The deviations from Raoult's law, represented by the straight lines, are seen 
to be very large for long chains. 

The activity equations for small values of y and z differ from equations 6 and 
7 chiefly by the substitution of a larger and a smaller number, respectively, in 
place of n - 1 in the exponentials. 
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FIQ. 1. Variation with mole fraction of the activities of the componenta for various 
valuea of n, indicated by the numbers alongaide the curves. (The un-numbered aurves for 
aA are for n = 2 and n - 10. The curve for n = 100 is practically identical wi th  that for 
n = 1ooO.) 

111. OSMOTIC PRESSURE 

The osmotic pressure of a solution is related to the activity of the solvent (B) 
by the exact thermodynamic equation 

VB ie the molal volume of the solvent and T ie the absolute temperature. 
ing u8e of equation 6, we obtain 

Mak- 
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Equation li agrees, except for the factor 2 in the final term, with an equation 
recently published by Powell, Clark, and Eyring (17), which, in the present 
notation, may be written 

This equation was derived on the basis of the assumptions “that the osmotic 
pressure is determined by the efiective mole fraction,” 

rather than the actual mole fraction, and “that the probability of a polymer 
molecule’s moving in segments is a linear function of ita environment, as ex- 
pressed by the volume fraction of polymer”-i.e. (for our hypothetical case, in 
which the volume of a submolecule equals the volume of a solvent molecule), 

The latter awumption seems to the writer highly improbable. Why should a 
chain molecule become more rigid the more dilute the solution? 

As Powell, Clark, and Eyring (and others before them (5 ,  14)) have showvn, 
there is considerable experimental evidence in favor of aa approximately resti- 
linear relationship between n/c and c ,  where c is the conwntration in any of the 
customary units. This relationship follows directly from either equation 11 or 
equation 12. 

From the slopes and intercepts of the II/c vs. c curves, one can calculate n, 
and so the average chain length per submolecule. (The “segment lengths” 
tabulated by Powell, Clark, and Eyring should each be divided by 2, if they 
are to conform to equation 11 rather than equation 12.) This procedure, how- 
ever, is based on the assumption that y is large, i.e., that there is a high degree 
of randomness of orientation a t  each joint between submolecules. If this is 
not the case, the calculated value of n will be too small and the computed 
submolecule length or segment length too large. Moreover, any tendency bf 
the solute molecules to aggregate, e.g., to form clusters of prallei chains, would 
also tend to decrease the randomness and so the computed value of n, ihcreasihg 
the apparent average length of the submolecule. These effects are doubtless 
responsible for the apparent segment lengths of ten to fifteen chain atoms in 
polystyrene and polyethylene oxides, with even larger apparent lengths in 
rubber and gutta-percha. It is interesting to note, however, that the computed 
average segment size in various cellulose derivatives corresponds approximately 
to a single glucose unit, indicating a high degree of randomness of orientation 
(large y) a t  each oxygen bridge bet\\een the rings. 

IV. FREEZING-POINT LOWERINQ 

The lowering of the freezing point of a liquid consisting of small molecules by 
dissolving in it a substance composed of chain molecules can be treated in much 
the same way as the osmotic pressure. 
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The freezing-point lowering (9) is related to the ahsolute temperature (e) 
of the freezing point of the pure solvent, the heat of fusion (per mole) of the 
solvent (AH, = H: - H:), and the activity (aB) of the solvent by the equation 

Assuming a B  to be given by equation 6, we have 

V. SOLUBILITY 

Equation 7 for the dependence of aA on composition and chain length leads 
to some interesting conclusions regarding the solubilities of long-chain 
compounds. 

For equilibrium between a saturated solution (of A in B) and the pure solid 
solute (A), the free-energy change is zero. Hence, 

(HA 7 H i )  + (Hi - Hi) - T(i.4 - 8:) - I I ' (S i  - S i )  = 0 (19) 

Here the four terms are, respectively, the heat of dilution, the heat of fusion, 
the entropy of dilution (times T ) ,  and the entropy of fusion (times T )  of the 
solute. The entropy of dilution we may approximate by the equation 

(20) 

where aA is the activity, given by equation 7, for a solution for which there is 
no heat of mixing. (In case the intermolecular interactions are such as to 
diminish markedly the randomness of the mixing, t,his approximation will not 
be accurate.) 

Each of the other three terms in equation 19 8hould (ll), except for a small 
end rorrection, be proportional to n. 

EA - s i  = - -RInaA 

We can therefore write 

and so 
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Figure 2 shows how, according to equation 21, the solubility (as expressed by 
N:, the volume fraction of solute in the saturated solution) depends on the chain 
length (n), for various values of K .  I t  is seen that the solubility tends to ap- 
proach either 1 - K or zero as the length of the molecule increases, depending 
on whether K is less than or greater than unity. 

Fro. 2. Variation of solubility (as represented by the volume fraction N:) with chain 
length, for various values of K. 

A further discussion of solubility, both in single and in mixed solvents, includ- 
ing comparisons with experimental data, is planned for another paper. 

VI. SUMMARY 

By means of a statistical treatment, equations h&ve been derived for the 
activities of the components of a solution containing both chain molecules and 
small (non-chain) molecules. Using these activity equations, relations have 
been derived and briefly discussed for the osmotic pressure, the lowering of the 
freezing point, and the solubility of such solutions. 
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The experimental work upon which this communication is based was carried 
out primarily in connection with certain photographic processes involving the 
imbibition of dyes. Neither in detail nor in scope did the investigation consider 
a number of limitations and factors proper to more complete theoretical study. 
It waa thought, however, that the re iults obtained offer a useful contribution to 
the problem of the interaction of dyes with proteins. 

Yo survey will be given of the rather scattered literature upon this subject. 
A useful, if not complete, bibliography is given in the paper by E. Elod (6), 
which covers the subject up to 1932. Specific references will be noted where 
pertinent. 

The time perhaps has passed when the problem could be discussed in terms of 
supposedly mutually exclusive theories of physical (electrostatic) adsorption and 
chemical (stoichiometric) combination. Actually, it seems that a little less 
generalization and a greater measure of specific description and discrimination 
are desirable. If we have ventured to present these admittedly incomplete 
studies, it is partly because we have (1) compared both acid and basic dyes 
and (2) used both “lime-process” and ‘iacid-process” gelatins. 

The significance of the second proviso is m follows: By far the greater number 
of physicochemical studies with or on gelatin have been made with materials 
obtained by the alkaline dehairing and plumping of calfskins, followed by wash- 
ing, neutralization with acid, and extraction with hot water. Such material 
has an isoelectric point at pH 4.7 to 5.2 (9, 21) and, apart from minor wrangles 

1 Presented a t  the Eighteenth Colloid Symposium, which was held a t  Cornel1 University, 

Communication No. 811 from the Kodak Research Laboratories. 
Ithaca, Kew York, June 19-21, 1941. 


