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A statistical mechanical treatment of high polymer 
solutions has been carried out on the basis of an idealized 
model, originally proposed by Meyer, which is analogous 
to the one ordinarily assumed in the derivation of the 
"ideal" solution laws for molecules of equal size. There is 
obtained for the entropy of mixing of n solvent and 
N linear polymer molecules (originally disoriented), 
.:lS= -k[(n/~) In vI+N In V2J where VI and V2 are volume 
fractions and ~ is the number of solvent molecules re­
placeable by a freely orienting segment of the polymer 
chain. This expression is similar in form to the classical 
expression for equal-sized molecules, mole fractions having 
been replaced by volume fractions. When the disparity 
between the sizes of the two components is great, this 
expression gives entropies differing widely from the 

INTRODUCTION 

I T is customary to correlate the thermodynamic 
properties of binary liquid systems with the 

so-called "ideal" solution laws. These rest funda­
mentally on an entropy of mixing given by 

where nl and n2 are the numbers of moles of the 
two components, and Xl and X 2 are their mole 
fractions in the mixture. Partial differentiation of 
(1) with respect to nl yields for the partial molfll 
entropy of dilution 

(2) 

Although (1) and (2) frequently have been ap­
plied indiscriminately, at finite concentrations 
they can be justified theoretically only when 
molecules of the two species are equivalent in 
size and shape, i.e., when molecules of the two 
species are interchangeable in the liquid. The 
importance of this limitation has been empha­
sized by a number of authors during recent 
years.2- 4 

1 Presented before the Division of Physical and Inorganic 
Chemistry of the American Chemical Society, at the 
Atlantic City Meeting, September 11, 1941. 

2 E. Hiickel, Zeits. f. Elektrochemie 42, 753 (1936). 
3 E. A. Guggenheim, Trans. Faraday Soc. 33, 151 (1937). 
4 R. H. Fowler and G. S. Rushbrooke, Trans. Faraday 

Soc. 33, 1272 (1937). 
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classical values, which accounts for the large deviations of 
high polymer solutions from "ideal" behavior. The entropy 
of disorientation of a perfectly arranged linear polymer is 
found to be of the order of R cal. per chain segment. After 
introducing a suitable heat of mixing term, partial molal 
free energies are computed, and the calculations are com­
pared with experimental data for all concentrations. Phase 
equilibria have been calculated in the region of partial 
miscibility. The theory predicts, in agreement with experi­
ment, that the critical composition for partial miscibility 
lies at a low concentration of polymer. Low intrinsic 
viscosities of polymers dissolved in poor solvents are 
attributed to the tendency for the molecule to assume a 
more compact configuration in such an environment. 

Meyer and co-workers"· 6 have found that 1181 

for solutions of long chain compounds dissolved 
in simple solvents, e.g., for carbon tetrachloride 
solutions of long chain esters, is much greater 
than Eq. (2) would predict. In other words, they 
have found strong negative deviations from 
Raoult's law, even when l1ti1 =O. Meyer and 
Uihdemann 5 suggested that this abnormal 
entropy effect was due to the ability of sections of 
a long chain solute molecule to act more or less 
independently of one another as kinetic units. 
Thus, the effective mole fraction should be 
greater than the actual mole fraction. An equiva­
lent explanation has been advanced recently by 
Powell, Clark and Eyring. 7 Apparently they 
were unaware of the serious criticisms of this 
point of view advanced by Huckel,2 principally 
on the grounds that it inherently assumes pri­
mary validity of the ideal solution laws when 
applied to mixtures of molecules differing greatly 
in size. Huckel has also pointed out that the 
kinetic units cannot be truly independent, nor are 
they independently interchangeable in the liquid 
as applicability of (1) or (2) would require. 
Finally, in order to explain experimental results, 

• K. H. Meyer and R. Liihdemann, Helv. Chim. Acta 18, 
307 (1935). 

6 Ch. G. Boissonnas, Helv. Chim. Acta 20,768 (1937). 
7 R. E. Powell. C. R. Clark. and H. Eyring, J. Chern. 

Phys. 9, 268 (1941). 
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1 t IS necessary to assume a size for the kinetic 
unit, which, though equal to the entire solute 
molecule at infinite dilution, decreases rapidly 
with increasing concentration, approaching a 
limiting size of some 15 to 30 chain atoms5,7 at 
high concentrations. 

Recently MeyerS has provided a more plausible 
explanation of the "abnormalities" of solutions of 
long chain, or polymeric, molecules. He has 
suggested an idealized model for such solutions, 
which consists of a quasi-solid lattice, not unlike 
that customarily used in the derivation of (1) for 
the case of a mixture of equal-sized molecules. A 
cell of the hypothetical lattice may be occupied 
either by a solvent molecule or by a segment of 
the polymer (solute). The segments of a given 
polymer chain must occupy a continuous se­
quence of adjacent cells, which, however, may 
meander irregularly through- the lattice. There 
will be many such sequences emanating from a 
given cell, and the polymer molecule may con­
form to anyone of them through suitable 
rotations about the valence bonds of the chain 
skeleton. According to' Meyer, entropies of 
mixing in excess of "ideal" values given by (1) 
are the result of these numerous configurations 
available to the polymer molecules. 

Meyer has discussed his model in qualitative 
terms only. Recently quantitative statistical 
mechanical treatments9- 11 of this model have 
been carried out independently by Huggins and 
the writer. On the basis of the preliminary 
accounts which have been published concerning 
these investigations, the results appear to be in 
substantial agreement. In this paper the writer's 
treatment of the problem wiIl be presented in 
full, with particular emphasis on an extension of 
the model and applications to hitherto unex­
plained characteristics of polymer solutions. 

DERIVATION OF THE ENTROPY OF MIXING 

Throughout this paper polymer molecules 
which are linear, i.e., consist of a single linear 
sequence of structural units, are under con-

8 K. H. Meyer, Zeits. f. physik. Chemie B44, 383 (1939); 
Helv. Chim. Acta 23, 1063 (1940). 

9 M. L. Huggins, J. Chern. Phys. 9, 440 (1941). 
10 Paper presented by Dr. Huggins before the Wilder D. 

Bancroft Colloid Symposium. Ithaca, New York, June 20, 
1941. 

II P. J Flory, J. Chern. Phys. 9, 660 (1941). 

sideration. Somewhat arbitrarily, the symmetry 
number of these molecules is taken to be two, due 
to (assumed) indistinguishability of the two ends 
of the molecule. Concurrently with the derivation 
of the fundamental relationships, special promi­
nence will be given to the assumptions involved. 

Assumption 1: the mixture of polymer and 
solvent molecules is assumed to conform to 
Meyer's model. This involves assumption of (a) a 
quasi-solid lattice in the liquid, (b) interchange­
ability of segments (not necessarily identical 
with the polymer structural units) of the polymer 
chain with solvent molecules in the lattice cells 
and (c) independence of lattice constants on 
composition. Although these assumptions obvi­
ously are quite artificial, there is some consolation 
in the fact that analogous ones are inherent in the 
model from which Eq. (1) is derived for mixtures 
of small molecules of equal size. 

Assumption 2: all polymer molecules are as­
sumed to be of the same size. 

Assumption 3: the average concentration of 
polymer segments in cells adjacent to cells 
unoccupied by the polymeric solute is taken to be 
equal to the over-all average concentration. 

Let no = the total number of cells in the lattice. 
N = the number of polymer molecules, each 

composed of x segments, anyone of which may 
replace a solvent molecule in the lattice. ,,= a coordination number for the lattice, i.e., 
the number of "first neighbor" cells in the lattice 
available to the next consecutive segment of the 
polymer chain. 

In order to determine the total number of 
possible non-identical configurations, let us first 
consider the process of successive addition of 
polymer molecules to the empty lattice con­
taining no cells. After N polymer molecules have 
been added, there will be no-xN cells which may 
be occupied by the terminal segment of the next 
polymer molecule to enter the lattice. According 
to assumption 3, the expected number of avail­
able unoccupied cells immediately adjacent to 
the cell occupied by the terminal segment of this 
polymer chain will be ,,(no-xN)/no. For the 
third segment the expected number of available 
cells wiIl be given by a= (,,-l)(no-xN)/no, 
since the cell occupied by the terminal segment 
eliminates one of the neighboring cells. 

Assumption 4: the expected number of avail-
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able positions for each successive segment is 
taken to be equal to a= (I' -1)(no-xN)/no. This 
is of the nature of an approximation, as it fails to 
exclude impossible configurations in which two 
segments, separated by two or more intervening 
segments but belonging to the same chain, 
occupy the same cell. Use of this "assumption" 
obviously will lead to computation of too many 
configura tions. 

For the expected number of configurations 
which the particular chain may assume without 
shifting the terminal group we have 

k is Boltzmann's constant, we obtainll 

j.Smixing= -k[nln (_n_)+Nln (~)] 
n+xN n+xN 

+k(x-l)N[1n (1'-1) -lJ-kN In 2. (7) 

This expression refers to the entropy change i;;: 

the process of mixing n pure solven t and N 
perfectly arranged (or oriented) polymer mole­
cules, subject, of course, to the assumptions 
introduced above concerning the nature of the 
solution. When x= 1, (7) reduces to the classical 

[ I' / (I' - 1) Jax- 1 
. expression (1), except for the symmetry term. 

(3) A few remarks should be made concerning the 

and for the expected total number of configura­
tions for the chain in the entire lattice 

(4) 

(4.1) 

where the factor! has been included in order to 
eliminate redundancy of configurations due to 
the indistinguishability of the ends of the polymer 
chain. 

The total number of possible configurations for 
the system consisting of N polymer and n solvent 
molecules in a lattice composed of no=n+xN 
cells is given by 

:.' 
W=(ljN!) II liN, (5) 

N~l 

where the factor 1/ N! eliminates redundant 
configurations which differ only by an interchange 
of one or more pairs of polymer molecules. 
Substituting (4.1) in (5) we obtain by suitable 
rearrangemen t 

W= ('Y-1)(X-l)N(~)[ (no/x)! ]x. 
.no 2NN! (no/x-N)! 

Replacing factorials by Stirling's approximation, 
N!=(Nje)N 

(

I' -1) (x-l)N (n+xN)n+N 
W= -- (1/2)N----

e nnNN 
(6) 

For the entropy of mixing, according to the well­
known Boltzmann relationship S=k In W, where 

use in the above derivation of "expected values" 
for the numbers of configurations, since actual 
values in many cases may deviate enormously 
from expectancy. When a is greater than unity 
(i.e., when the concentration of polymer is not 
too great) the expected number of available 
configurations which extend from a given site in 
the lattice, is, according to Eq. (3), a very large 
number. (We consider x to be at least of the 
order of 100.) But the actual number of configu­
rations may be zero; for example, there might be 
only one cell available for the second segment and 
none for the third. On the other hand, for a more 
favorably located initial cell, the number of 
available configurations may be an exceedingly 
large number. Since the total number of sites 
available to the terminal segment of the Nth 
polymer molecule to be added to the lattice is 
very large when a> 1, the actual total number of 
configurations available to the particular mole­
cule will deviate negligibly from the expected 
number calculated from (4). 

When a is appreciably less than unity, i.e., at 
high concentrations of polymer, the expected 
number of configurations (Eq. (3» extending 
from a given site will be very much less than 
unity. If a is sufficiently small, e.g., of the order 
of 0.5, then liN also may be extremely small (for 
large x). That is, at high polymer concentrations 
the expected number of configurations available 
for an additional polymer molecule is much less 
than unity. Of all the possible configurations for 
the N -1 polymer molecules in the lattice, only a 
small fraction (not exactly equal to liN) possess 
one or more continuous sequences of x vacant 
cells any place in the entire lattice .. \ccording to 
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this interpretation, liN is the average "yield" of 
such sequences of unoccupied cells per configura­
tion of the N -1 polymer molecules in the lattice. 
Thus, after a certain conC'entration is exceeded, 
addition of more polymer molecules to the lattice 
(possessing a fixed number of cells) decreases the 
i:otal number of configurations for the system. 12a 

In spite of the use of expected values from which 
actual deviations may be large, Eq. (6) for the 
total number of configurations should be a valid 
approximation at all concentrations, subject only 
to the original assumptions. 

THE ENTROPY OF DISORIENTATION 

The "configurational" entropy of a lattice filled 
with N polymer molecules in the absence of 
solvent, which is obtained by setting n=O in (7), 
isll 

AS* = kN In (x/2) 
+kN(x-1)[ln (')1-1)-1]. (8) 

When x is large 

AS*/Nx""k In [(')I-1)/e]. (9) 

That is, the entropy change per mole of segments 
is of the order of R.12b These relationships express 
the entropy change for the transformation of N 
polymer molecules from a state of perfect 
orientation and arrangement in the lattice to the 
state of random entanglement. This probably is 
the source of an appreciable portion of the 
entropy of fusion of polymer crystallites (e.g., in 
rubber, polyesters, etc.). Obviously, other terms 
arising from change in the lattice constants and 
in the arrangements and motions within the seg­
ments when fusion occurs also contribute to the 
total entropy of fusion. 

It can be shown that the lattice "saturated" 
with polymer molecules will contain a few vacant 
cells, equivalent to the "holes"13 in simple liquids. 
From the point of view of the equations used 

12. Alternatively, one may consider that the polymer 
molecules are continually diffusing in the lattice, i.e., the 
system is continually changing from one configuration to 
another. Then VN is the time average number of available 
sequences of x units. 

l.b H. Mark, J. App. Phys. 12, 41 (1941), using the 
statistical theory of the internal configurations of polymer 
molecules, has arrived at a similar value for the entropy of 
disorientation per chain bond about which there is free 
rotation. 

13 H. Eyring, J. Chern. Phys. 4, 283 (1936); H. Eyring 
and J. O. Hirschfelder, J. Phys. Chern. 41, 249 (1937). 

above, these vacant cells should be treated as 
molecules of a second component. However, their 
concentration is so small that no significant error 
has been committed in setting n = 0 in the 
derivation of (8). 

The entropy change on mixing n solvent with 
N randomly entangled (liquid state) polymer 
molecules is 

ASmixing = ASm ixing - AS* 

= -k[n In (_n ) 
n+xN 

Or 

+Nln(~)J. 
n+xN 

(10) 

(10.1 ) 

where VI and V2 are volume fractions of solvent 
and polymer, respectively. The pure liquid 
polymer (disoriented) will be chosen as the 
standard state for the solute, as is customary for 
binary liquid mixtures. Equation (10) will serve 
as the starting point for the derivation of the 
thermodynamic relationships discussed below. 

It is interesting to note that (10.1) is so similar 
in form to (1) ; replacement of volume fractions 
by mole fractions in the logarithms of the former 
yields the latter. The entropy of mixing of 
polymer and solvent is greater than (1) would 
predict, but less than that for mixing the com­
pletely dissociated polymer segments with sol­
vent. Meyer's8 qualitative discussion of the 
problem leads to the same conclusion. 

PARTIAL MOLAL FUNCTIONS 

Differentiating (10) with respect to n, there is 
obtained for the partial molal entropy of the 
solvent 

AS I = -R In (1-V2)-R(1-1/x)V2 (11) 

=RV2(1/x+vd2+vN3+·· .). (11.1) 

Similarly, 

Inasmuch as the forces acting between two 
polymer molecules, or between a polymer and a 
simple molecule, obviously are of the same sort as 
those operating between pairs of simple mole­
cules, the heat of interaction between a polymer 
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molecule and its environment should vary 
linearly with the composition. Consequently, the 
heat of mixing can be represented by a relation­
ship used by Scatchard14 for simple molecules 

~H=BVIV2nN/(nVI+NV2)' (13) 

where B is a constant for a given pair of liquids 
and VI and V2 are the molar volumes of solvent 
and polymeric solute, respectively. According to 
the model considered here, V2=XV1• 

The partial molal heat contents are, according 
to (13) 

(14) 
and 

~ii2=BV2VI2=BxVIVI2. (15) 

Combining these equations with (11) and (12), 
there is obtained for the partial molal free energy 
of the solvent 

~Pl=RTln (1-V2) 
+RT(1-1/x)V2+B V 1VZ2 (16) 

= -RTv2[1/X+(1-K)V2/2 
+vN3+· .. ], (16.1) 

where 
K=2BVdRT 

and for the partial molal free energy of the solute 

~F2=RT In (I-VI) -RT(x-l)VI 
+BV1xVI2. (17) 

Equations (16.1) and (11.1) reduce to the 
"ideal" solution relationships at infinite dilution. 
This is virtually a necessary consequence3 of the 
Gibbs-Duhem relationship 

a~Fda In Xl=a~Fda In X 2• 

Since for any acceptable model for the system the 
activity az of the solute must be proportional to 
the concentration at infinite dilution 

Or 

a In ada In X2=(1/RT)a~F2;a In X 2= 1 
a~Fda In Xl=RT. 

~FI=RT In Xl 

which at infinite dilution may be replaced by 

(16.2) 

which is identical with (16.1) as V2 approaches 
zero. 

14 G. Scatchard, Chern. Rev. 8, 321 (1931). 

THE EFFECT OF SEGMENT SIZE 

It has been assumed that a section of the 
polymer chain which occupies a volume equal to 
that of one solvent molecule is equally free to 
occupy anyone of 'Y -1 cells, entirely inde­
pendent of the configuration of preceding seg­
ments of the chain. If the solvent molecule is 
very small, or if there are limitations, perhaps 
steric in nature, on the tortuosity which the chain 
may comfortably assume, then the size of the 
section of the chain which is free to orient itself 
at random, irrespective of the orientation of the 
preceding sections, may be equivalent to the 
volume occupied by several solvent molecules. In 
this situation, we may construct a new lattice in 
which one cell will accommodate either fJ solvent 
molecules or one segment of the polymer chain. 

The entropy of mixing according to this revised 
model will be given by either of the Eqs. (7) or 
(10), provided that n is replaced by n'=n/(3; x 
likewise has been decreased by the same factor, 
but a modified symbol is unnecessary. Differ­
entiating the resulting expression with respect to 
n (not n')l1 

~Sl= -(R/(3)[ln (1-v2)+(1-1/x)v2] (18) 

= (Rvdi3)(1/x+vd2+vN3+···), (18.1) 
and 

~FI = (RT /i3)[In (1-V2) 
+(1-1/X)V2+KvN2] (19) 

= - (RTvd!3)[I/x+(1-K)vd2 
+vN3+· .. )], (19.1) 

where K is re-defined as 2i3B Vd RT. Equation 
(19.1) reduces to ~FI= -RTXz at infinite dilu­
tion, as is required. Equation (12) for the partial 
molal entropy of the solute can be applied intact 
when i3> 1, except that x must be taken equal to 
the number of re-defined segments per chain. 
Consequently, Eq. (17) can be written 

~F2=RT[In (I-VI) 
-(x-l)vl+KxvN2J. (17.1) 

COMPARISONS WITH EXPERIMENTAL DATA 

Osmotic pressures of dilute polymer solutions 
have been investigated quite extensively,15-19 as a 

16 H. Staudinger and G. V. Schulz, Ber. 68, 2320, 2336 
(1935); G. V. Schulz, Zeits. f. physik. Chernie A176, 317 
(1936). 
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means for determination of molecular weight. 
Strong deviation from Van't Hoff'~ law, i.e., from 
"ideality," are invariably observed at low con­
centrations, necessitating a frequently precarious 
extrapolation to infinite dilution. Experimental 
results for a number of dilute polymer sofu­
tions15.16.19.20 support the simple relationship be­
tween osmotic pressure 7r and concentration c of 
polymer (in grams per cc) 

(20) 

where M n is the number average molecular 
weight of the polymer and b is a constant, inde­
pendent of M n,15.l9 representing the degree of 
departure from ideality. 

For dilute solutions Eq. (19.1) yields 

7r= -!:J.F"\/V1"""RTvdV l /3x+RT(1-K)vlj2 V 1/3 

which reduces at once to (20) ;21 overlooking the 
difference between volume and weight concen­
tration in the second term 

b""" RT(1- K) /2 Vl!3. (21) 

Huggins9.10 has reported a similar deduction of 
(20) for the case K = 0, {3 = 1. 

When vaTious solvents or solvent mixtures are 
considered, according to (21) the greater the heat 
of mixing the smaller will be the value of b at a 
given temperature, since K depends directly on 
the heat of mixing constant B. As K approaches 
unity b approaches zero, and the solution ap­
proaches classical "ideality." When K becomes 
but slightly greater than unity, (x large), the 
region of partial miscibility is reached and the 
polymer will no longer dissolve to an appreciable 
concentration (ef. seq.). Thus, a dilute high 
polymer solution should be most nearly "ideal" 
when it is approximately on the verge of pre­
cipitation. Osmotic pressure measurements on 
rubber dissolved in benzene-alcohol mixtures22 

16 K. H. Meyer, E. Wolff and Ch. G. Boissonnas, Helv. 
Chim. Acta 23, 430 (1940). 

17 E. Wolff, Helv. Chim. Acta, 23, 439 (1940). 
18 O. Hagger and A. J. A. Van der Wijk, Helv. Chim. 

Acta, 23,484 (1940). 
,. See also, H. Mark, Physical Chemistry of High 

Polymeric Systems (Interscience Publishers, Inc., New 
York, 1940), pp. 228-245. 

20 G. Gee, Trans. Faraday Soc. 36, 1161 (1940). 
21 Actually, the partial molal volume "V, should be used 

in place of V" but since the difference between them is so 
small in dilute solutions (see ref. (16)) they need not be 
distinguished here. 

22 G. Gee, Trans. Faraday Soc. 36, 1171 (1940). 

and on solutions of polyvinyl chloride in tetra­
hydrofurane, a good solvent, and in dioxane, a 
poor solvent,23 confirm this deduction.24 However, 
to conclude, as Gee22 has done, that a better 
extrapolation to infinite dilution is obtained in 
the presence of alcohol is not necessarily correct; 
higher terms in the series expansion of (19) must 
be included if the extrapolation is to be improved. 

Al though the sta tistical theory presen ted above 
predicts the correct form for the osmotic pressure­
concentration relationship (20), quantitative 
correlation with the observed "deviation term" 
(i.e., bc2) requires a larger value of !3 than would 
be expected from steric considerations regarding 
chain flexibility. Thus, from osmotic pressure 
measurements on dilute solutions of rubber in 
toluene, Meyer, Wolff and Boissonnas found 
V 1b=56 cal. at 298°K. The heat of mixing, 
deduced from the temperature coefficient of 
the osmotic pressure, was negligibly positive.25 

Taking K=O, according to (21) bV1 =300/,B, or 
{3""'5.3, which corresponds to about seven 
isoprene units, or 28 chain atoms, per segment. A 
similar value for b VI was obtained by Wolffl7 for 
gutta-percha in toluene. 

For the system toluene-polystyrene, according 
to osmotic pressure measurements by Schulz,l. 
b VI = 39 cal. at ordinary temperature. Although 
reliable data concerning the heat of mixing do not 
appear to have been obtained,26 certainly the 
heat effect accompanying mixing of two such 
chemically similar materials is negligible, and it 
may be assumed that K = O. A value of {3 = 8 is 

23 H. Staudinger and J. Schneiders, Ann. d. Chemie 541, 
151 (1939). 

24 R. E. Powell, C. R. Clark and H. Eyring, in a paper 
presented at the Conference on Viscosity sponsored by the 
New York Academv of Sciences, February 14, 1941, have 
reached the fantastic conclusion from Gee's results that a 
benzene-methanol mixture is a hetter solvent for rubber 
hydrocarbon than benzene alone. Apparently they have 
("onfused the literal meaning of the term "ideal" with its 
conventional meaning with reference to the so-called 
"ideal" solution laws. Addition of meth<lnol to the benzene 
solution of rubber decreases -/:"F\ the free energy of 
dilution, thus d~creasing the thermodynamic solvent 
power. Si!!ce -/:"F, is greater for pure benzene solutions 
than -/:"F, for an "ideal" solution, addition of methanol 
decreases the discrepancy between observed and "ideal" 
values, but this is another matter. 

25 L. Hock and H. Schmidt, Kautschuk 10, 33 (1934), 
have shown bv direct calorimetric measurements that the 
heat of mixing of benzene and rubber is positive, but very 
small. 

26 See Ch. G. Boissonnas and K. H. Meyer, Zeits. f. 
physik. Chemie B44, 392 (1939). 
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FIG. 1. Partial molal free energv as a function of the 
volume fraction of polymer for {3 = 1 and {3 = 5.3 . .--osmotic 
pressure results for toluene-rubber, reference 16; O-re­
suits from vapor pressures of toluene-rubber mixtures 
reference 16; D-results from vapor pressures of benzene: 
rubber mixtures, reference 28. 

required in order to bring the theoretically 
derived relationship into agreement with experi­
ment; the corresponding segment contains about 
16 chain atoms. 

If rotation about each single bond in the chain 
were completely free, one or two single bonds 
should be sufficient to allow a new choice of 
direction of the chain independen t of its preceding 
portions. Allowances for the limitations on the 
effective available configurations due to the 
potential restricting rotation about single carbon­
carbon bonds and to the steric interferences of 
side chain substituents, presumably would raise 
the segment size somewhat. But it is difficult to 
account for segments of the size indicated by the 
above analysis on these grounds alone. Over­
simplifications inherent in the model which has 
been postulated, and in particular assumption 4, 
probably are responsible for a considerable part 
of the discrepancy. The latter assumption allows 
too many configurations to be included, thus 
giving a configurational entropy which is too 
large. 

The segment sizes calculated above are similar 
to those deduced from the temperature coeffi-

cients of polymer viscosities,27 but the writer is 
not inclined to consider this as more than a 
coincidence. Vicsous flow isa kinetic phenomenon, 
whereas the thermodynamic properties of polymer 
solutions (taking the pure liquids as reference 
states) depend primarily upon configurational 
characteristics, according to the premises of this 
paper. Unless it can be shown that kinetic and 
configurational segments should be the same, 
correlation7 of these independently estimated 
segment sizes is likely to be illusory. 

In Fig. 1 partial molal free energies calculated 
from Eq. (19) are compared with experi­
mental values for solutions of rubber in toluene 
(Meyer, Wolff and Boissonnasl6) and in benzene 
(Stamberger28). The dilute solution data, which 
are from those discussed previously, were ob­
tained osmotically. Data at higher concentrations 
(v2>0.20) are based on vapor pressure measure­
ments.29 Stamberger28 found no perceptible differ­
ences in the vapor pressure lowering for samples 
of rubber varying considerably in molecular 
weight. This is in agreement with Eq. (19) which 
predicts virtual independence of !1F Ion x when x 
is large and the solution is not too dilute. 

The upper curve in the figure has been 
calculated from (19) taking K=O, {J=1 and 
x = 2900, which corresponds to the average mo­
lecular weight, 270,000, obtained by Meyer and 
co-workersl6 from the limiting value of 'Trlc. For 
the lower curve a value of {J= 5.3 has been chosen 
in order to obtain agreement with experiment at 
low concentrations (see above). The value of x 
has been lowered correspondingly to 550 in order 
to preserve consistency with the observed mo­
lecular weight. \Vith increasing concentration the 
experimen tal points depart from the {J = 5.3 
curve, approaching the {J = 1 curve at high 
concentrations. The comparison of observed and 
calculated values at high concentrations of 
polymer is shown more effectively in Table I by a 
tabulation of observed activities al = pd p10 and 
those calculated from (19) and the relation­
ship In al=!1FdRT, taking {J= 1. 

27 P. ]. Flory, ]. Am. Chern. Soc. 62,1057 (1940)' W. 
Kauzman and H. Eyring, ibid. 62, 3113 (1940). ' 

28 P. Stamberger, ]. Chern. Soc. 2318 (1929). 
• 29 C?ncentrat~ons for the experimental data actually are 
In weight fractIons, although volume fractions are indi­
cate9 .. The difference is unimportant, however, since the 
denSities of the two components are similar. 
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The measure of agreement in this range is all that 
should be expected considering the crudity of the 
original assumptions. 

I t would be possible, of course, to improve the 
agreement between theory and experiment by 
assuming an appropriate dependence of {3 on V2. 
However, this apparent variation of {3 may 
reflect imperfections in the theory, rather than 
an actual variation in segment size with con­
centration. 

PHASE EQUILIBRIA 

When there is a large heat effect accompanying 
the mixing of two liquids composed of molecules 
of ordinary size, the observed entropy of mixing 
usually deviates considerably from the ideal 
entropy given by (1), i.e., the solution is not 
"regular. "30 Due to differences in the energies of 
interaction between neighboring pairs of like and 
unlike molecules, distribution of the two species 
is not random, as is assumed in the derivation 
of (1). Furthermore, if tJ.H <0 the comparatively 
large solvent solute interactions in the solution 
are likely to lead to a higher degree of local 
orientation of neighboring pairs than is found in 
the pure components, thus decreasing the 
entropy of mixing; if tJ.H> 0, the opposite is 
likely to be true. 

Similarly, in the case of polymer solutions for 
which tJ.H is large in magnitude the entropy of 
mixing should not be expected to agree with that 
calculated assuming random distribution of the 
two species, random configurations for the 
polymer molecules, and packing and local orien­
tations equivalent to the pure liquid com­
ponents.l8 "Deviations" should be expected to 
arise from the same sources discussed above for 
simple molecules. When tJ.H>O, moreover, com­
pact configurations of the polymer chains should 

TABLE I. 

v, a! (abs.)!' a! (calc.) 

0.95 0.20 0.13 
0.90 0.36 0.25 
0.80 0.57 0.45 
0.70 0.73 0.60 
0.60 0.86 0.73 

30 J. H. Hildebrand, Solubility of Non-Electrolytes (Chem­
ical Catalog Company, New York, 1936), second edition, 
p.65. 

be preferred, thus decreasing the configurational 
entropy (d. seq.). 

In spite of these additional limitations imposed 
on the partial molal entropy and free energy 
Eqs. (18) and (19) when tJ.H»O, it is of interest to 
examine the character of the phase-composition 
diagram which they predict when tJ.H is suffi­
ciently large to cause separation into two phases. 

Equilibrium between two phases in a binary 
system requires that their compositions V2 and 
v' 2 shall be such that 

tJ.F\(V2) = tJ.F\(V'2) , tJ.F2(V2)=tJ.F2(v'2). (22) 

When tJ.H1=0, i.e., when K = 2{3B VI/RT= 0, tJ.F1 
decreases continuously as V2 increases from zero 
to unity. But when K is sufficiently positive, 
according to (19) the curve for tJ.F1 will possess 
a maximum and a mmImum in this range. 
Differentiating (19) with respect to V2 and 
equating to zero 

KXV22- (Kx-x+1)V2+1 =0, 

the solution of which is 

Kx- (x-1)±[(Kx-x+1)2_4KxJ! 
V2=~~-~~~~~~~~--~~-

2Kx 
(23) 

The critical condition for incIpIent separation 
into two phases requires that the maximum and 
minimum in tJ.F1 coincide, i.e., that the two roots 
of (23) shall be equal. This occurs when l1 

K (critical) = (1 +vxF/x. (24) 

Substituting (24) in (23) 

V2 (critical) = 1/ (1 +Vx). (25)11 

When x is large the critical value of K is 
slightly greater than unity, and it approaches 
unity as x approaches infinity; at larger values of 
K two phases will co-exist in equilibrium. The 
critical composition, at which the two phases 
become identical, according to (25), occurs at a 
low concentration when x is large. The same 
relationships could have been derived by setting 
atJ.F d aV2 equal to zero, since 

atJ.F2/aV2= - ({3:~1)atJ.FI/aV2' (26) 

In Fig. 2, -{3tJ.FI/RT calculated from (19) 
when x = 1000 is plotted against V2 for several 
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values of K in the neighborhood of K (critical) 
= 1.0644. Two scales have been used in order to 
cover in a single graph a broader concentration 
range. The character of the curves changes very 
rapidly with K. Since K depends inversely on the 
absolute temperature, these curves may be re­
garded as representative of a series of tempera­
tures in the vicinity of the critical temperature 
for total miscibility. The corresponding curves for 
-t:.F2/RT show related characteristics, as is 
required by (26); the occurrence of a maximum 
in t:.Fl is accompanied by a minimum in t:.F2, and 
Vice versa. 

When K exceeds the critical value, there exists 
a pair of values V2 and v' 2 which satisfies the 
equilibrium conditions (22). The smaller of these 
(V2) will lie between zero and the maximum in 
-t:.Fl plotted against V2, as in Fig. 2; the larger 
(V'2) will lie at a concentration greater than that 
at the minimum in -t:.F\. The value of t:.F1(V2) 
= t:.F 1 (v' 2) must necessaril y be small, since t:.F 1 at 
the maximum in the curve is small. In fact, 
except when K is very near K(critical) , it is 
permissible to set t:.F1(v'2) = 0 and to compute V'2 
from K using Eq. (19); -iJt:.FI/iJV2 is so large at 
V'2 that the error so introduced is insignificant. 

Since (19) can be solved explicitly for K but 
not for v' 2, it is more convenient, having set 
t:.F 1 = 0 to compute K for a given value of v' 2. 
That is, we may take 

Substituting (17.1) in the second part of (22) 

(In V2) /x- (1-I/x) (l-v2) + K(I-v2)2/2 
= (In v' 2) / x - (1 -1/ x) (1 - v' 2) 

+K(I-v'2)2/2, (28) 

which can be solved by trial for V2 using the above 
values of V'2 and K. If necessary, a second 
approximation can be computed by substituting 
the first approximation values of K and V2 into 
(19) to obtain t:.F1, which in combination with V'2 
will yield a second approximation value for K. 
The second approximation value of V2 can then be 
obtained from (28). 

In the range where this procedure is applicable 
V2 is quite small (assuming a large value of x). 
Replacing (l-v2) and (l-v2)2 by unity in (28), 
substitution therein of (27) for K, and expansion 

FIG. 2. Partial molal free energies as functions of the 
volume fraction of polymer for various values of K in the 
critical region for partial miscibility. 

in series gives as an approximate relationship 
between V2 and v' 2 

(l/x) In (v'2/v2)=2/x+(v'2)2/2·3 
+(V'2)3·2/3·4+(V'2)4·3/4·5+···. (29) 

These procedures are unsatisfactory very near 
the cri tical poin t, e.g., for K < 1.10 when x = 1000. 
Here it is necessary to solve for K and V2 by trial. 

The curve in Fig. 3, showing V2 and V'2 as a 
function of I/K when x=1000, has been calcu­
lated as described above. Since the ordinate is 
proportional to the absolute temperature, the 
curve represents the calculated temperature­
composition diagram. The concentration (V2) of 
polymer in the solvent phase rapidly approaches 
a negligible value as 1/ K decreases. This is 
amplified by the following calculated composi­
tions which extend beyond the range of Fig. 3. 
See Table II. 

Thus, the theory predicts an extremely unsym­
metrical phase composition relationship. The 
solvent is readily soluble in the polymer even at 
large values of K (e.g., far below the critical 
temperature for complete miscibility), but the 
polymer will dissolve perceptibly in the solvent 
only very near the critical point, and then only to 
a small extent.l1 

These deductions are confirmed by the work of 
Bronsted and Volqvartz31 on mixtures of various 
lauric acid esters with high molecular weight 

31 J. N. Bronsted and K. Volqvartz, Trans. Faraday Soc. 
35, 576 (1939); ibid. 36, 619 (1940). 

Downloaded 30 Jan 2011 to 130.39.160.30. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



60 PAUL ]. FLORY 

0 

o.9~ 

0 50 

0 0 • 40 

• 
0.90 

• 
!. 
K 

0 0 
0.B5 

10 

0.80 
o o 

o 010 0.20 
"if, 

FIG. 3. Phase composition curve calculated for a solution 
of a polymer composed of 1000 segments. e-n-propyl 
laurate-polystyrene, reference 31; Q-chloroform-cellulose 
acetate, reference 32. 

(average ca. 300,000) polystyrene, which had 
been fractionated to remove low molecular 
weight constituents. Below the critical tempera­
ture for complete miscibility, none of these were 
observed to dissolve the polymer to an appreci­
able extent, although the polymer imbibed as 
much as several times its volume of solvent. 
Bronsted and Volqvartz concluded that their 
results were "compatible with the existence of a 
critical point at which the solubility of solvent in 
the swelled phase is infinite." Their results are 
also consistent with a critical value of V2 slightly 
greater than zero, which would be in accord with 
theoretical predictions. 

Bronsted and Volqvartz's data for the n-propyl 
laurate-polystyrene system are shown in Fig. 3. 
The temperature scale, shown on the right, has 
been related to 11K by an arbitrary propor­
tionality factor (340) so that the absolute temper­
ature is proportional to 11K, as the definition of 
K requires. Results of Papkov, Rogovin, and 
Kargin32 on the chloroform-cellulose acetate 
(average molecular weight about 175,000)33 
system are also shown using the same tempera­
ture scale. 

Quantitative agreement between theory and 
experiment cannot be expected in view of the 

32 S. Papkov, S. Rogovin, and V. Kargin, Acta Physi­
cochim. U.R.S.S. 8, 647 (1938). 

33 This estimated molecular weight is based on a specific 
viscosity given by the above authors, and the intrinsic 
viscosity-molecular weight data of E. O. Kraemer, Ind. 
Eng. Chern. 30, 1200 (1938), 

various approximations which have been intro­
duced. But the ability of the theory to predict 
the two outstanding characteristics of such 
binary systems, namely, a very low critical 
composition, and a high swelling capacity ac­
companied by negligible solubility, is a most 
gratifying confirmation of the validity of Meyer's 
model and the statistical treatment of it which 
has been presented here. Many of the so-called 
gels composed of polymers saturated with solvent 
doubtless owe their existence merely to this 
peculiarity of the temperature-composition curve, 
rather than to any peculiar colloidal structure, as 
generally has been assumed. 

MOLECULAR CONFIGURATION IN 
POOR SOLVENTS 

Staudinger and Heuer34 observed that the 
relative viscosity of a dilute solution of poly­
styrene was less in a poor solvent than in a good 
one at the same concentration. They also found 
that the addition of a precipitant, e.g., ethanol, to 
a solution of polystyrene in a solvent such as 
toluene reduced the relative viscosity continu­
ously to the point of precipitation. Staudinger 
and Schneiders23 found lower viscosities for 
solutions of polyvinyl chloride in dioxane than in 
tetrahydrofurane, which their osmotic pressure 
results showed to be a better solvent. Similar 
results were obtained by Gee22 on solutions of 
rubber in various solvents and solvent mixtures. 

The diminution of viscosities in poor solvents 
frequently has been attributed to decreased 
solvation. If by "solvation" some specific inter­
action between solute and solvent is meant, it is 
difficult to conceive of solvation in a toluene 
solution of polystyrene, where the van der Waals 
forces between like and unlike components are 
both similar and small. Furthermore, if solvation 
does occur, how can it be so markedly decreased 

TABLE II. 

11K v, v', 

0.862 1.4XlO-5 0.1915 
0.833 1.7 X 10-7 0.2357 
0.770 1.3 X 10-13 0.3300 
0.715 1 X 10-21 0.407 
0.625 5 X 10-42 0.527 
0.500 3 X 10-9• 0.683 

34 H. Staudinger and W. Heuer, Zeits. f. physik. Chemie 
Al71, 129 (1934). 
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by the addition of a few cc of alcohol which has no 
particular affinity for either component? 

When the heat of mixing of polymer and 
solvent is positive, i.e., in a poor solvent medium, 
the polymer molecules should tend to prefer more 
compact configurations where intramolecular 
contacts are more numerous. As is well known, 
globular or spherical polymer molecules enhance 
the viscosity of their solutions relatively little in 
contrast to the marked effects of uncoiled long 
polymer chains which assume more or less 
random configurations. Therefore, the low rela­
tive viscosities in poor solvents very probably 
reflect changes in average configuration of the 
polymer molecules, dependent upon the solvent 
medium. Intrinsic viscosities at incipient pre­
cipitation are of the order of one-half or less of 
the values for the same polymers in a good 
solvent medium.22 This would lead to the con­
clusion that the polymer molecule at the critical 
point pervades about the same volume as another 
molecule of half its chain length in a good solvent. 

CONCLUSIONS 

Quantitative statistical treatment of Meyer's 
model accounts for the following hitherto unex­
plained peculiar properties of high polymer solu­
tions: (a) the shape of the partial molal free 
energy-composition diagram throughout the com­
position range (i.e., the large deviation from 
"ideal" entropies), (b) the virtual independence 
of partial pressure on molecular weight of the 
polymer except in dilute solutions, and (c) the 
extreme dissymmetry of the mutual solubility­
temperature diagram and the limited high 
swelling capacity of linear polymers in certain 
media. These achievements confirm the correct­
ness of the general point of view regarding these 
systems. On the other hand, quantitative agree­
ment between calculations and observations is 
not particularly good, presumably due to im­
perfections of the model itself and to limitations 
of the present treatment imposed by assump­
tion 4. 
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Statistical Mechanics of Nearest Neighbor Systems 

II. General Theory and Application to Two-Dimensional Ferromagnets 

ELLIOTT W. MONTROLL* 

Sterling Chemistry Laboratory. Yale University. New Haven, Connecticut 

(Received October 2, 1941) 

This is a continuation of an effort to reduce to the solution of a characteristic value problem 
the rigorous calculation of thermodynamic properties of systems in which the intermolecular 
forces are sufficiently short ranged so that practically the entire potential energy of the system 
results from interactions between nearest neighbors. The partition function of such a system 
can be expressed in terms of the largest characteristic value of a linear operator equation and 
finally as the ratio of partition functions of systems with relatively few particles whose potential 
energy functions differ somewhat from those in the original system . .A method of evaluating 
grand partition functions and one of introducing interactions between more distant neighbors 
are discussed. The general theory is applied to the calculation of magnetization, internal 
energy, and specific heat of two-dimensional ferromagnets on the basis of the Ising model. 
There seems to exist a X-point phase transition in the change from ferromagnetic to nonferro­
magnetic states. 

I. INTRODUCTION 

T HE intermolecular forces in many solids 
are sufficiently short ranged to permit the 

* Sterling Research Fellow in Chemistry, Yale Uni­
versity. Present address, Cornell University, Ithaca, New 
York. 

total potential energy of the solid to be repre­
sented by the sum of the interactions of each 
molecule with its nearest neighbors. With this 
approximation the evaluation of the potential 
energy contribution to the partition function 
and the thermodynamic properties of a solid can 
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