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Abstract

Static and dynamic light scattering techniques have been used to study the aggregation behaviour of polygalacturonic acid (PG) in aqueous

solution at different pH values. The dependence of apparent molecular weight, radius of gyration and hydrodynamic radius with time or

concentration have been determined. Other structural parameters as contour length, Kuhn segment numbers, mass per unit length, persistence

length, and average number of chains per cross section have been deduced from Casassa–Holtzer plots. The weight average molecular

weight increases linearly with time suggesting that the aggregation kinetics follows a simple Smoluchowski equation in which all the kernels

are identical, the aggregation rate being approximately two chains per day at pH 3.83. As a consequence of this growth the polydispersity of

the aggregates increases with time. The growth of the hydrodynamic radius with time suggests that no water molecules remain trapped in the

aggregate, explaining why the PG does not gel. q 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The interest in the study of aggregation phenomena has

grown very much during the last years (Meakin, 1992).

Static and dynamic light scattering (SLS and QLS) are

excellent techniques for the determination of aggregation

rates because they allow the analysis of the evolution of

particles without disturbing the aggregation process.

Several examples can be found in the literature concerning

the use of QLS for measuring aggregation kinetics

(Scurthenberger & Newman, 1993), but simultaneous

experiments using SLS and QLS are less common (Holthoff,

Egelhaaf, Borkovec, Schurtenberger, & Sticher, 1996). This

is partly due to the fact that the measurement time of both

SLS and QLS in conventional scattering instruments is

rather long compared with the kinetic process and, as a

consequence, the molecular weight and the mean size of the

growing particle are uncertain. The results can only be

acceptable if the aggregation process is slow compared with

the time required for carrying out the measurement.

However, the advantages of using SLS and QLS simul-

taneously are obvious. For instance, many aggregates have a

fractal nature and therefore relationships with molecular

weight (Mw), gyration radius (Rg) and hydrodynamic radius

(Rh) can be found (Meakin, 1992). Rg and Mw can be

measured from SLS experiments but Rh has to be measured

from QLS. Furthermore, the important parameter intro-

duced by Burchard, Schmidt, and Stockmayer (1980), r ¼

Rg=Rh; which provides a simple test for the particle shape,

requires the determination of both gyration and hydrodyn-

amic radii, and therefore the use of both scattering

techniques.

When working with biopolymers such as polysacchar-

ides it is not easy to find a set of chains with different

molecular weights in order to test the relationships between

the molecular weight and other structural parameters.

Furthermore, as many polysaccharides form gels and

aggregates (Burchard, 1994a,b; Lang & Burchard, 1993;

Rees, 1969), it is rather difficult to obtain experimental data

for isolated chains and test previous relationships (Burchard

et al., 1980; Morris, 1991). Pectins (Clark & Ross-Murphy,

1987), b-glucanes (Gómez, Navarro, Manzanares, Horta, &

Carbonell, 1997), tamarind seed polysaccharide (Lang &

Burchard, 1993), etc. are good examples of that problem.

Although structures for aggregates of different polysacchar-

ides have been proposed (Clark & Ross-Murphy, 1987;

Walkinshaw & Arnott, 1981a,b), as far as we know nothing

is known about the kinetic evolution of the aggregation

process.
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In this paper we study the aggregation kinetics of

polygalacturonic acid (PG) in aqueous solution at different

pH values, determining the variation of several structural

parameters with time. PG is the skeleton chain of pectins, an

important group of polysaccharides in food manufacturing

because of their gelling and thickening properties (Clark &

Ross-Murphy, 1987). The advantages of the simultaneous

use of SLS and QLS techniques are also shown. Finally, a

dimensionless parameter, f, defined as the contour length

relative to the radius of gyration of the particle, is

introduced. The value of this parameter depends only on

the structure of the particle, being independent of its

molecular weight or its chemical nature. It provides a simple

test for the particle shape. Compared with the Burchard

parameter, r, it has the advantage of only requiring SLS

experiments.

1.1. Theoretical background

1.1.1. Static light scattering

In SLS experiments, the intensity of the scattered light is

measured at different scattering angles. Traditionally the

experimental results have been analyzed through the well

known Zimm (1948) equation

Kc
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¼
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In this equation DRðuÞ is the excess Rayleigh ratio, c the

particle concentration (mass/volume), q the wave vector,

Mw the weight average molecular weight of the particles in

solution, Rg, the radius of gyration, A2 the second virial

coefficient and K is given by

K ¼
4p2 ~n2

1

NAl
4

d~n

dc

� �2

ð2Þ

d~n=dc is the refractive index increment, l the wavelength of

the incident light and ~n1 the solvent refractive index.

However, several specific plots have been proposed to

obtain detailed information on the structure of the scattering

particle (Meakin, 1992). Berry (1966) suggested plotting

ðKc=RuÞ
1=2 against q 2, which for branched materials

produces good linearity, at least in the region of small q 2.

As in the Zimm plot, the radius of gyration is obtained from

the slope of the plot.

Kuhn (1934) has described a stiff chain by statistical

segments of length lK greater than the bond length l. If the

number of Kuhn segments NK per chain is large enough as to

apply the Gaussian statistics, the mean square radius of

gyration is given by

R2
g ¼

1

6
Nl2C1 ð3Þ

where C1 ¼ 6R2
g;Q=l2N is the characteristic ratio defined by

Flory (1969), and the subscript Q refers to the theta state and

N is the number of bonds of length l. The parameters NK and

lK have to fulfill the condition that the contour length should

be the same. From previous equations it follows that lK ¼

lC1 and NK ¼ N=C1:
If the chain is short and the Gaussian statistics cannot be

applied, for polydisperse chains obeying the Schulz–Flory

distribution, the simple relationship

r2
g

D E
z

l2
K

¼
N2

Kw

4ð1 þ NKwÞ
ð4Þ

was obtained by Schmidt (1984). Here NKw denotes the

weight average of Kuhn segment numbers. This relationship

is used below to define the contour length relative to the

radius of gyration, f.

According to the Kratky and Porod (1949) plot

(q2ðRu=KcÞ vs. q ), the transition from Gaussian to rod

behaviour will occur around a qp ¼ l2=plK value at

which PðqÞcoil ¼ PðqÞrod (where PðqÞ is the particle form

factor). That value can be found by extrapolating the

Gaussian plateau to large q and the rod like straight line

towards smaller q. However, when the number of Kuhn

segments is low, the plot usually fails and the Casassa–

Holtzer (qðRu=KcÞ vs. q ) plot is preferred. Here, for rod

chains a plateau of height p=qL is reached asymptoti-

cally. Furthermore, the plot shows a maximum and the

ratio maximum height/asymptotic plateau height is a

function of the number NK of Kuhn segments (Schmidt

et al., 1985). The position of the maximum is a function

of the polydispersity since for monodisperse chains

uðqRgÞmax ¼ 1:4 and for polydisperse chains with a

Schulz – Flory distribution umax ¼ 1:73: The plateau

height has a value of pML, where ML ¼ M=L is the

mass per unit length or the linear mass density. Random

coils do not show the asymptote.

Defining the contour length relative to radius of gyration

by means of a parameter f according to

f ¼ L=Rg ð5Þ

we can rewrite Eq. (4) as

f ¼ 2ð1 þ NKÞ
1=2 ð6Þ

Analogously for a random coil, the parameter f is given by

f ¼ ð6NKÞ
1=2 ð7Þ

Both equations evidence a simple relationship between this

parameter and the weight average of Kuhn segment

numbers. Plots of f vs. N
1=2
K or (1 þ NK)1/2 should be

linear for a random coil or a wormlike chain, the slopes

being 2.45 and 2, respectively. f has an universal character,

independent of the chemical structure of the chain and

depends only on its stiffness.

The radius of gyration for a cylinder of length L and
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radius r, is given by

Rg ¼
L2

12
þ

r2

2

 !1=2

ð8Þ

while for an ellipsoid of revolution of semi-axis a and b, Rg

is given by

Rg ¼
a2

5
þ

2b2

5

 !1=2

ð9Þ

When one of the dimensions of the particle is much higher

than the other one (L @ r for the cylinder and a @ b for a

prolate ellipsoid) it is straightforward to show that f ¼ffiffiffi
12

p
¼ 3:5 for a thin rod, and f ¼

ffiffiffi
20

p
¼ 4:5 for a thin

prolate ellipsoid.

These figures are the maximum values for these

geometries, as they decrease when the lower length is not

negligible. The minimum values for random coil and

wormlike particles correspond to NK ¼ 1; i.e. f ¼
ffiffi
6

p
and

2
ffiffi
2

p
; respectively. Obviously, the comparison between

experimental and theoretical values of this parameter will

help to distinguish among different shapes of a particle.

Therefore as the r parameter, f provides a relatively simple

test for the particle shape, although in this case only SLS

experiments are required.

1.1.2. Dynamic light scattering

In a dynamic or quasi-elastic light scattering experiment,

the temporal fluctuations of the scattered intensity, which

are due to the Brownian motion of the particles, are analysed

(Berne & Pecora, 1976). The analysis of these fluctuations is

usually achieved through the normalized time correlation

function of the scattered intensity, g2ðtÞ; which is related to

the time correlation function of the scattered electric field,

g1ðtÞ; by the Siegert relationship. For monodisperse hard

spheres g1ðtÞ decays exponentially with time. The decay

constant, G, allows the determination of the translational

diffusion coefficient, according to G ¼ Dtransq
2: Therefore, a

plot of ln g1(t) vs. t should give a straight line, although

deviations are quite common due to: (i) polydisperse

sample, (ii) rotational diffusion of the particles, and (iii)

internal chain dynamics. For polymer molecules an

intermediate regime can be found for which the initial

decay of the measured intensity autocorrelation function

from a cumulant analysis (Koppel, 1972) can be described

by

DapðqÞ ¼
G1

q2
¼ Dc½1 þ kðRgqÞ2 þ · · ·� ð10Þ

where G1 is the first cumulant, and k is a dimensionless

quantity which strongly depends on the structure, flexibility

and polydispersity of the macromolecule. Dc is the

translational diffusion coefficient of the macromolecule at

a finite concentration c. In most cases, the concentration

dependence of the diffusion coefficient can be approximated

by a linear relationship

Dc ¼ Dtransð1 þ kDcÞ ð11Þ

Combination of the last equations gives

DapðqÞ ¼ Dtrans½1 þ kcðRgqÞ2 þ · · ·�ð1 þ kDcÞ ð12Þ

This equation is very similar to that of the SLS equation;

when plotted it gives rise to the so called dynamic Zimm

plot.

The hydrodynamic effective radius, Rh, can be calculated

applying the Stokes–Einstein relationship

Dtrans ¼
KBT

6phsRh

ð13Þ

where hs is the viscosity of the solvent, and KB is the

Boltzman constant.

2. Experimental

2.1. Materials

PG (Fluka Biochemika, 95%) was dissolved in water

with the addition of NaOH until a pH 7.0 was reached. A

stock solution of 4.16 g dm23 at pH 6.88 (in 0.0375 g dm23

phosphate buffer) containing the antimicrobial NaN3

(107 ppm) and EDTA (1.04 mmol dm23) was prepared.

The last compound was added to prevent gelation by the

possible presence of Caþ2 ions. The stock solution was then

stirred for 2 h and passed through 0.45 mm nylon-66 filters

(Whatman). Dilutions were made with the buffer solution.

Solutions at pH 3.83 and 3.31 were similarly prepared

with the appropriate lactate/lactic solutions. In these cases a

small amount of a precipitate appeared which was removed

by centrifugation and filtration after stirring for 12 h. The

dried precipitate was weighed, permitting determination of

the PG concentration in solution.

All solutions were filtered again during the filling of the

measurements cells.

Fig. 1. Berry plot showing a good linearity at low scattering angles.

[PG] ¼ 2.5 g dm23. T ¼ 25 8C.
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2.2. Light scattering

Light scattering measurements were performed in a

Malvern 4700c equipment. The wavelength used was

488 nm and benzene was employed as standard. Scattering

data were collected at 25 8C over the angular range 30–

1408. Refractive index increment, dn=dc ¼ 0:153 cm3 g21;
was obtained from measurements in a differential refract-

ometer Atago model DD7.

3. Results and discussion

3.1. Aggregation of PG at pH 3.83

Fig. 1 shows the intensity of scattered light vs. q 2

according to Berry plot (Berry, 1966). The plot shows a

good linear behaviour at the lowest q values from which the

radius of gyration and an apparent molecular weight, Mp
wðcÞ;

can be obtained

1

Mp
wðcÞ

¼
1

MwðcÞ
þ 2A2c þ · · · ð14Þ

The measurements were carried out at different times

observing a clear increment in the apparent molar mass. The

kinetics was followed for 25 days and the results are shown

in Fig. 2. It can be observed that Mp
w increases linearly with

time except at the beginning of the experiment. Values of

1.68 £ 104 g mol21 h21 and 3.81 £ 106 g mol21 were

obtained for the slope and intercept, respectively. The

intercept value does not correspond to Mp
w at zero time since

initially the rate is faster.

It is a surprise that the radius of gyration remained

practically constant with time while a extraordinary increase

of the molar mass was measured (Fig. 3 plots the dependence

of Rg with Mp
w). According to the percolation theory, if the

aggregation were a random process, the molecular weight

and size of aggregates should grow with a fractal dimension

between 2.0 and 2.5 (De Gennes, 1979). Furthermore, the

molecular weight and Rg should be related through a

potential law (exponent between 0.4 and 0.5). When an

aggregation of stretched chains is considered, once a stick has

been constituted, the radius of gyration does not increase

although the molecular weight increases. As the radius of

gyration describes the distribution of statistics of the particles

of mass, a slight decrease of this parameter could lead to

increase in mass if the aggregation would be stronger in the

central zone than on the ends of the chains. But the increase of

Rg is so slight that during the aggregation process the

aggregates remain essentially with the same geometrical

shape and contour length. Alternatively, the aggregation

could imply the formation of regular star-branched struc-

tures. In this case, if the number of arms is larger than f ¼ 3;
the Kratky plot passes through a maximum and approaches a

plateau at large u (qRg). The height of the plateau is ð6f 2

4Þ=f 2 (Burchard, 1983) allowing the estimation of the

number of arms. Furthermore, the position of the maximum

appears very close to umax ¼ 2:45: When plotting the

experimental results according to Kratky and Porod (1949),

an almost linear dependence is observed, and therefore the

star aggregation must be ruled out.

If the hypothesis of a lateral aggregation with constant

contour length for the aggregates is correct, then the

parameter f as well as the number of Kuhn segments,

should remain constant during the aggregation process

(Schmidt et al., 1985). To test the validity of the hypothesis,

the experimental results were plotted according to Cassasa–

Holtzer (Schmidt et al., 1985). Fig. 4 shows a few examples

obtained at different aggregation times. All curves show a

Fig. 2. Dependence of Mp
w vs. time showing that except at short times the

growing rate is constant. [PG] ¼ 2.5 g dm23. pH 3.83. T ¼ 25 8C.

Fig. 3. Rg vs. Mp
w for the PG aggregates.

Fig. 4. Casassa–Holtzer plots at different aggregation times (from down to

up: 15, 34, 62.7 and 88.8 h). [PG] ¼ 2.5 g dm23. pH 3.83. T ¼ 25 8C.
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maximum at intermediate u values and reach a plateau

at higher u values. From them, as it was commented on

above, the different structural parameters of Table 1 can

be deduced.

This table shows that the f parameter values are clearly

different from those corresponding to the extreme values for

a thin rod (3.5) and a thin prolate ellipsoid (4.5), suggesting

a different structure for the aggregates. The parameter, as

well as the number of Kuhn segments, is constant with time

(or equivalently with the molecular weight of the aggre-

gate). This constancy is in agreement with Eqs. (6) and (7)

(corresponding to a wormlike chain and a random coil,

respectively) which require a direct relationship between

both parameters. By using an average value of NK ¼ 4:3
deduced from the Table 1, these equations give values for f

as 5.1 and 4.6, for the random coil and the wormlike chain,

respectively. Both values are too close (and not far from the

experimental one, faverage ¼ 5:9) to distinguish between

both structures. However, the existence of the plateau in the

Casassa–Holtzer plot suggest the wormlike structure as the

most probable one.

The average number of chains per cross section in an

aggregate, Ncs, can be deduced from the ratio between the

mass per unit length of the aggregate and the mass per unit

length of a single polygalacturonic chain. The evolution of

Ncs with time is shown in Fig. 5. Obviously, the plot is linear

indicating again a constant aggregation rate equal to 1.9

chains per day.

After 600 h the experiment was stopped and a classic

Zimm plot was measured by diluting the sample from the

initial concentration of 2.5 g dm23 to a final one of

0.44 g dm23. The obtained results are plotted in Fig. 6.

The value deduced for the second virial coefficient is close

to zero (3.35 £ 1028 mol ml g22) in agreement with the

values obtained by Berth, Dautzenberg, & Hartmann (1994)

for aggregates of pectins.

The aggregation kinetics can be described in terms of

the mean field Smoluchowski equation (Broide &

Cohen, 1992; Daoud, 1987; Villarica, Casey, Goodis-

man, & Chaiken, 1993; Wright, Muralidhar, & Ramk-

rishna, 1992). Under low concentration conditions where

only binary collisions need to be considered and

Table 1

Evolution of structural parameters (deduced from Casassa–Holtzer and Berry plots) with time for ½PG� ¼ 2:5 g dm23: pH 3.83. T ¼ 25 8C: Mwl is Mw per

chain

Time (h) 1023 Mw1 (g mol21) 1023ML (g mol21 nm21) NKw Lw (nm) lp (nm) f Aggregation number

15.0 228 4.4 4.1 572 70 5.7 11.0

62.7 231 7.5 4.4 579 66 5.9 18.9

83.6 242 7.9 4.5 607 67 6.0 19.7

87.9 232 8.5 4.1 584 70 5.8 21.2

88.8 236 8.5 4.4 592 67 6.0 21.3

150.7 237 10.9 4.3 595 70 5.9 27.4

159.2 233 11.3 4.3 585 68 5.9 28.3

180.4 236 11.7 4.4 593 68 6.0 29.5

200.4 231 12.3 4.4 580 67 6.0 30.9

223.3 233 12.6 4.6 586 64 6.1 31.6

256.1 232 13.4 4.3 582 67 6.0 33.6

373.0 216 17.5 4.2 543 65 5.8 43.9

438.5 233 18.9 4.4 585 66 6.1 47.3

566.8 226 22.9 4.3 566 66 6.0 57.6

607.6 216 25.5 4.2 543 65 5.9 64.0

Fig. 5. Evolution of the average number of chains per cross section, Ncs,

with time for PG. Experimental conditions as in previous figures. Fig. 6. Zimm plot for PG aggregates formed after 600 h.
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assuming that the aggregation is an irreversible process,

the kinetic equation has the form

dPn

dt
¼

1

2

X
iþj¼n

KijPiPj 2
X1
k¼1

KnkPkPn ð15Þ

Here Pn is the concentration of aggregates (clusters) of

size n, and Kij are the kinetic constants (in the fractal

literature they are known as ‘kernels’) for the associ-

ation kinetics of aggregates of size i and j to form an

aggregate of size i þ j: Therefore, the first term in Eq.

(15) represents the generation of clusters of size n from

smaller clusters and the second one represents the

disappearance of clusters of size n to form larger

clusters of size n þ k: The behaviour of the system is

determined by the kinetic constants Kij. Analytical

solutions of Eq. (15) are possible only in certain special

cases. The simplest one (considered by Smoluchowski

himself) corresponds to the case in which all the kernels

are identical and equal to a constant K. Under this

hypothesis the concentration of aggregates of size k is

given by the equation

Pk ¼
Tk21

ð1 þ TÞkþ1
ð16Þ

where T is the time in K 21 units. According to this

equation the concentration of the aggregates of size k

has a maximum for a time given by T ¼ ðk 2 1Þ=2 and

the concentration of the monomer decreases steadily.

This solution allows to calculate the growth of the

number (Nn) and the weight (Nw) average aggregate

mass, the results being

Nn ¼ 1 þ T ð17Þ

Nw ¼ 1 þ 2T ð18Þ

i.e. the growth of the average cluster is linear with time.

Therefore the experimental results for the growing of

the aggregates (Figs. 2 and 5) can be understood under

this simple Smoluchowski model. On the other hand,

the polydispersity, defined by the relationship Nw=Nn;
increases with time reaching a maximum value of two

at infinite time. This fact is also in agreement with the

slight increase of the position of the maximum in the

Cassasa–Holtzer plot observed in Fig. 4 (see also Fig.

10 below) in the interval of umax ¼ 1:4 (for mono-

disperse chains) and 1.73 (for polydisperse chains),

mentioned above.

Fig. 7 resumes the experimental results from QLS

experiments. It shows the obtained values for the diffusion

coefficients at different times and q 2 values. The lines

drawn in the figure correspond to a quadratic fit of D with

q 2. The hydrodynamic radii were obtained from the D

values at q ¼ 0 and the results are plotted in Fig. 8. This

figure shows that the hydrodynamic radius changes linearly

with time although the observed change (from 180 to

260 nm) can be considered small.

From the results of Figs. 5 and 8 a linear dependence

between the hydrodynamic radius and the average number

of chains per cross section can be found, the result being

Rh ¼ 170 þ 1:55Ncs: The observed slope represents the

increase in the hydrodynamic radius when an additional

chain incorporates to the aggregate. This value is close to

the observed radius for a pectin chain deduced from X-ray

experiments carried out by Walkinshaw and Arnott (1981a,

b). For an amide pectin (unpublished results) the observed

value was 44 nm/chain. These two figures suggest that the

aggregation of pectin polymer chains is accomplished by a

Fig. 7. Time evolution (up to down) of the dependence of the diffusion

coefficients with q 2 for PG. Experimental conditions as in previous figures.

Fig. 8. Hydrodynamic radius vs. time for PG aggregation at pH 3.83.

Fig. 9. Dependence of Mp
w vs. time. [PG] ¼ 2.9 g dm23. pH 3.31.

T ¼ 25 8C.
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great number of water molecules which remain trapped into

the aggregate (a necessary condition to form hydrogels as it

is the actual case for pectins) but not in the aggregation of

PG. In fact, PG does not gel at any of the experimental pH

values studied here.

3.2. Aggregation behaviour of PG at pH 3.31

Similar studies to those described previously were

carried out at pH 3.31. Fig. 9 shows the experimental

evolution of the apparent molar mass. Mp
w increases linearly

with time much faster than that at pH 3.83, and Rg remains

practically constant, the average value being 78 ^ 2 nm.

Experiments were stopped after (typically) 60–70 h since a

significant fraction of the aggregates precipitated. After this

time the solution also acquired a white colour evidencing a

sedimentation process.

Only at initial times the Casassa–Holtzer plot evidences

the existence of a maximum around umax ¼ 1:6 and a

plateau at u . 2.7 (Fig. 10). The values obtained at 25 and

65 min for the average number of chains per cross section in

an aggregate, Ncs, were 11.2 and 31.2, respectively. The

aggregates grow also in length since values of 533–794 nm

were obtained for the contour length. The number of Khun

segments also grows and the f parameter changes from 5.62

to 7.71.

At longer times the Casassa–Holtzer plots do not

evidence (experimental results not shown) the existence of

plateaus. However, maximi around umax ¼ 1:4–1:8 were

observed. These results suggest a random coil structure for

the aggregates. This less ordered structure (compare with

the one observed at pH 3.83) would be the result of the faster

aggregation observed at this pH value. This fast aggregation

of chains would not allow the formation of better ordered

structures as wormlike or linear ones, which require a lateral

aggregation.

The faster aggregation rate does not allow an accurate

determination of the diffusion coefficient at different

scattering angles because of the large time necessary for

these experiments. For this reason, only values at 308 were

obtained, the results being plotted in Fig. 11.

Fig. 10. Casassa–Holtzer plots observed at 25 (†) and 65 (W) min for the

aggregation of PG at pH ¼ 3.31. [PG] ¼ 2.9 g dm23.

Fig. 11. Time evolution of the diffusion coefficient at 308 for PG

aggregation. Experimental conditions as in Fig. 9.

Fig. 12. Dependence of Mw with PG concentration at pH 6.88.

Fig. 13. Kratky plots for PG at pH 6.88 and concentrations of (a) 0.844 and

(b) 3.37 g dm23.
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3.3. Aggregation behaviour of PG at pH 6.88

At this pH the PG is completely ionized, i.e. is a

polyanion. However, the high concentration of salts (to

adjust the pH or to prevent mould growth) which give

[Naþ] . 0.04 M, were high enough as to reduce the long

range interactions between chains. Therefore its behaviour

can be approximated to the one of a neutral polymer chain.

At this pH value no changes with time were observed and

only dependences of structural parameters with concen-

tration can be considered. Fig. 12 shows an almost linear

dependence of the apparent weight average molecular

weight (Eq. (14)) with PG concentration. The extrapolation

of the experimental results at zero concentration gives a

value of Mw ¼ 75 £ 103 g mol21: The values obtained for

the radius of gyration slightly increase with concentration

ranging from 69.9 nm at ½PG� ¼ 0:422 g dm23 to 78.5 nm

at ½PG� ¼ 3:37 g dm23:
As previously, the experimental intensity of light

scattered were plotted according to Kratky equation. Two

of these plots are shown in Fig. 13 where the absence of a

maximum and the asymptotic decrease with u, suggests that

the aggregates structure is not a star-branched one. Again it

is concluded that the process implies a lateral aggregation.

This conclusion was confirmed by plotting the results

according to Casassa–Holtzer (Fig. 14) which correspond to

wormlike structures. From them and following the same

calculation process as above, the parameters of Table 2 were

derived. For the lowest concentration studied the asymptote

was not observed (probably due to the values of qRg were

not high enough) and values in brackets were derived

accepting that the aggregates behave as rigid rods for which

the value of f is 3.46. This allows the determination of the

contour length and therefore the other parameters as well.

The value used for f is also supported by its experimental

tendency with concentration. The number of average

number of chains per cross section in an aggregate, Ncs, is

much lower than that at previous pHs. The low values

observed suggest that the polymer chains only interact in the

aggregate in less than 50% of their length.

Fig. 15 resumes the quasi-elastic light scattering

experiments plotted as a dynamic Zimm diagram. The

concentrations studied were the same as those in static

measurements. Hydrodynamic radius (Rh) were obtained

from the Stokes–Einstein equation and diffusion coeffi-

cients (D ) obtained by extrapolation to a zero scattering

angle. The results are shown in Table 3 together with the

values for Burchard’s parameter r. Its dependence with

concentration does not allow a direct extrapolation, but the

value at zero concentration can be obtained from individual

extrapolation of Rh ( ¼ 65 nm) and Rg ( ¼ 22 nm). The high

resulting value of r ¼ 2:9 is only compatible with

polydisperse rigid rods (Burchard, 1994a,b) This supports

Fig. 14. Casassa–Holtzer plots for PG at pH 6.88 and concentrations of (a)

3.37 g dm23 and (b) 2.53 g dm23.

Table 2

Structural parameters for PG at different polymer concentrations at pH 6.88

and 25 8C

c (g dm23) 0.422 0.844 1.69 2.53 3.37

ML (g mol21 nm21) (556) 589 706 785 961

Ncs (1.37) 1.45 1.74 1.93 2.36

1023 Mw1 (g mol21) (64) 107 129 134 144

NKw (1.5) 1.5 2.8 1.8 2.4

Lw (nm) (158) 262 316 330 354

lK (nm) (105) 175 111 112 148

lp (nm) (53) 87 56 56 74

f ¼ Lw=Rg (3.46) 3.57 4.07 4.20 4.51

Fig. 15. Quasi-elastic light scattering experiments plotted as a dynamic

zimm diagram.

Table 3

Values for Dc, Rh and r at different PG concentrations at pH 6.88

c (g dm23) 0.422 0.844 1.69 2.53 3.37

108Dc (cm2 s21) 4.86 2.49 1.63 1.42 1.12

Rh (nm) 50 98 150 173 218

r 1.39 0.75 0.52 0.45 0.36

M. Alonso-Mougán et al. / Carbohydrate Polymers 51 (2003) 37–4544



the use of f as 3.46 for the calculations in brackets of

Table 2.
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