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I. INTRODUCTION

GENEI\AL INTEREST IN LIGHT SCATTERING has greatly increased
in the last few years due largely to its application to the study of colloidal suspen-
sions-and polymer solutions. The chemist who wishes to acquaint himself with
the theoretical background in this field finds that Cabannes’ treatise (4), contain-
ing the best basic treatment of the subject, is out of print and essentially unob-
tainable. The only other book én this subject—Bhagavantam (1)—does not
adequately cover a considerable portion of relevant material. Moreover, neither
of these books Lreats the developments of the past decade or the special problems
connected with large molecules, Finally, the initial work on light scattering
from solutions of large molectles has not produced a literature adequate to pro-
vide one with a working knowledge of the subject,

In this stage of development it may be usefu! to summarize the main features
of the classical theory of light scattering and the recent extensions of the theory
that are applicable lo solutions of large molecules. Because of limitations of
space, practically no reference will be made to experimental work. The de-
velopment begins with the tveatment of scatiering from an isolated nbratmg
dipole. By use of fluctuation theory and thermodynamics this treatment is
extended to scattering from a binary mixture. The special problem of scattering
from solutions of large molecules is then developed on the basis of relations he-
tween scattering and (1) molecular weight and (2) size and shape of the solute
molecules. Finally, the theory of depolarization is treated together with a re-
view of the useful information obtainable from measurements, of depolanzat;on :
with unpolarized and polarized light. ‘

II. SCATTERING OF LIGHT FROM AN ISOLATED MOLECULE

Polarized, monochromatic light waves propagating in free space consist of an
~electromagnetic disturbance, having equal electric and magnetic fields, E and H,
directed at right angles to one another varying in intensity sinusoidally with
time; the wave travels perpendicularly to bhoth of these components. These
properties may be rigorously described in the form of solutions of Maxwell’s
electromagnetic equations (3). The energy density at any point is, of course,
the sum of the energy densities of the respective fields; and, since the fields vary
90 :
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with time, energy flows from one place to another. Investigation shows that

the instanianeous rate of flow of energy at any point is given by Poynting’s vec-
tor, §, which is proportional to the vector product of the electric and magnetic

fields at that point:
s=C"EXH (1)

4
If this is averaged over time to obtain the average rate of flow of energy per
square centimeter in the direction of propagation, that is, the intensity of the
light beam, I, it is found that

I=2E | @)
N 8

¥
E, is the maximum value, or amplitude, of E.
If a molecule of a transparent, nonabsorbing substance lies in the light beam,

it will scatter energy from the beam, behaving as a source of secondary radiation,
This secondary or scattered light depends in character on both the incident light
and on the molecule itself, and so serves as a source of information about either.
The classical theory of this effect will now be summarized.

For the present we will confine the discussion to small isotropic, spherical
molecules, introducing the complicating factors of size and internal structure -
later. When such a molecule is placed in an electric field, such as a light wave,
the negatively charged electrons are shifted slightly in one direction and the
positively charged nuclei in the other, so that the molecule acquires an electric
dipole moment, 1tis generally found, for fields of the intensities and frequencies
we are here concerned with, that this induced moment is proportional to the field
strength; if p is the dipole moment and E represents the magnitude of the elec-

tric field,
p=cl (3)

« is the proportionality constant called the polaﬁzability.
The electric field of a light wave may be represented by
tion of time and distance such as the following:

a sine or cosine func-

E = Eycos g}—? (z.— ) (4)

X is the wave length of the fight, @ is the distance in the direction of propagation,

and Eo is the amplitude of the light. wave. )
As this wave passes over a molecule placed at a certain position, o, In the

path of the light, it will exert an oscillating electric force on the electrons in the

molecule and these will respond to produce -an oscillating dipole moment (see

Fig. 1), The magnitude of the monient at any time is obtained from (3) and
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4). Thus:

p = alycos % (ry — cf) | {(5)

According lo classical electromagnetic theory, an oscillating dipole of this
kind should radiate energy in the form of spherical waves of light. The strength
_of the electric field of these waves at a distance r from the vibrating dipole is
given (3, 18, 20} by equation (6).

“of energy per
tensity of the

2 A2
E’:ia[pICOS¢=QED%COS%(IQ-—C_J—S-F)COSq& (6)
iz

e
.

Fig. 1. Scattering from small particle with polarized incident light

I Light is scattered from a particle at the origin; the scattered intensity is indicated by the

_Jengths of the vectors:in the various directions and the polarization by the double-
headed arrows. ‘The scattering is completely polarized and symmetrically distributed around
the Z axis.

In this equation the brackets around p indicate that, wherever { appears, it is
to be replaced by the retarded time, ({ — r/c), to allow for the time it takes the
scattered wave to travel the distance r from the molecule. Angle ¢ is the angle
between the directions of vibration of the electric vectors in the incident and




CLASSICAL THEORY OF LIGHT SCATTERING FROM SOLUTIONS 93 -

scattered rays. This direction in the scattered ray is perpendicular to its direc-
tion of propagation, as it must be in any light beam, and always lies in the plane
determined by the direction of the electric vector in the incident light and the
direction of propagation of the scatiered beam at the point in question.

The intensity of scattering in any direction, [/, is given as usual by ¢/8x
times the square of the amplitude, E;, of the vibration. If we recognize that
the intensity of the incident beam, [, is ¢/8x times the square of Ey, we obtain:

_ 16wty cos? ¢
- Aip?

1 (¥

Thus it is found that the polarization and intensity of the scattered light depend
in a regular way on the direction of scattering. These relations are diagrammed
in Figure 1. ¥
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Fig. 2. Seattering from small particle with unpolarized incident light

- Fhe incident lght is dnalyzed into two perpendicularly polarized beams out of phase. The
scatlered Hght, as indicated by the arrows, also generally contains two independent components,
except for light in the X-¥ plane. The scattering is symmetrical around the X axis.

An unpolarized light beam may be thought of as the superposition of two
polarized beams, polarized at right angles to each other, and incoherent in phase,
that is, with phases which vary at random with respect to one another. Each
one of these beams induces independent oscillations in the molecule and these
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scatter light independently of one another. A diagram of the resulting scattering
is given in Figure 9, The light is now equally bright and completely polarized
in all directions normal to the incident heam, However, it is twice as bright and
comple{ely unpolarized in both the forward and backward directions of the inci-
dent beam, This situation is represented by the equation:

_ 8rtatly{l + cos’ )
a Atr?

ognize that
we ohtain:

r (8)

g is the angle between the incident beam and the direction of scattering.

LiI. SCATTERING FROM A SOLUTION

It has been shown that energy will be radiated in all directions from a polariz-
able molecule (or small particle) residing in the force field of a light wave. In
most practical cases, however, since i} is impossible to observe the scattering of
a single molecule, it is necessary to study what happens when a number of mole-
cules are simultaneously illuminated.

The simplest case is that of the perfect gas, where the molecules move at ran-
dom and completely independently of one another. Hence each molecule may
be considered as an independent source, and the intensity of the tolal scattered
light will be the sum of the intensities from each of the individual molecules, as
stated by Mariotte’s law for independent sources.

However, in a condensed phase the molecules are far from being independent
of one another; in fact, they are arranged in something approaching a regular
manner. All molecules in a given part of the incident wave front will be vibrat-
ing with the same phase, but since they occupy nearly regular positions there will
be interference batween their scattered waves just as in a diffraction grating.
The usual result is that the aggregate intensity is sharply reduced below the sum
of the intensities which would come from each molecule alone if it were isolated.
For this reason pure liquids, which have several hundred times as many molecules
per unit volume as their vapors at atmospheric pressure, only scatter from ten
to fifty times as much light.

There are several ways of calculating the extent of this interference. Perhaps

_ the most direct (21) is to add up immediately the scattered wave irains from the
different molecules, taking due account of their varying phases, and average over
all positions of the scatiering molecules. This method involves some rather
recondite statistical mechanics and is not well suited to our present purposes.
A simpler method is known as the thermadynamic method, originally used by
Finstein (8) and more recently applied to polymer solutions by Debye (5). This

treatment is less direct and tends to conceal some of the assumptions involved by
its very elegance; nevertheless, it skillfully accomplishes a difficult task with
small effort.
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The Thermodynamie Method

The extreme opposite of a perfect gas, with its random molecular arrangement,
is the perfect crystal, where the molecules are placed in absolute order at smal}
distances from one another. Such a medium is completely homogeneous from
an optical standpoint and scatters no light; this may be demonstraied readily
with the aid of Figure 3. Let 4 and B be two members of a lattice of volume

Fig. 3. Scattering from a homogeneous medium

clements, 1, which are small as compared with the wave length and are regularly
distributed throughout the medium, All the molecules in one of these elements
may be considered as concentrated in a point source of radiation, The waves
scaltered by each will be given by equation (6), with the appropriate values of r,

If the medium is absolutely homogeneous, A and B scatter exactly the same
amount of light and the electric fields from each at the observation point P have
the same strength, The distance, i, between them, however, is arbitrary and
--may be chosen so that these fields acl in opposite directions because of the dif-
ference in the values of r in equation (6). They will then cancel.

All of the elements of the medium may be paired in this manner (except those
in thin layers near the surfaces which are negligible), and the total scattered
. intensity will be zero.

It is thus apparent thal a perfectly homogeneous transparent medium would
scatler no light. Actual transparent liquids are not completely homogeneous,
however, as a result of the thermal motions of the molecules. 1f we consider a
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gmall volume in a mass of fluid we will find that molecules are continuaily mov-
ing in and out of it as a result of their chance wanderings, with the result that
the number in the volume, and hence the density, fluctuate at random about a
mean value. 1f the liquid is a mixture, the concenirations in the small volume
fluctuate in the same way as the density.

In most cases the refractive index of the material changes with the density and
concentration, so that, as a result of the fluctuations of these two variables, the
medium is rendered turbid by the presence of minute refracting inhomogeneities.

The probable extent of the fluctuations of density and concentration from their
equilibrium value can be calculated by Boltzmann’s theorem from statistical
mechanics. If the increase of the Gibb's free energy of the fluid as a whole (at

constant temperature and pressure) when the small volume changes from its
equilibrium state to another state is AF, then the probability of this change is

equal to:
W = Ce™ ™" )

where C is a proportionality constant and k and T have their usual meanings.*
Tf then we know the relation between the tefractive index and the density and
concentration, and the relation between these two quantities and the free energy,
we are in a position to calculate the probability of a deviation of the refractive
- index from the normal due to thermal fluctuations in any small volume. By the
application of classical electrodynamic theory, we can then calculate the inten-
sity of the light scattered from such a volume immersed in a fluid of normal re~
fractive index. Because of the fortunate circurnstance that the fluctuations in
any one volume are random and independent of those going on around it, it is
possible merely to add up the intensities from ail the volume elements of the
fiuid to obtain the total scattering, since the coherence of phase necessary for

abnormal interference is lacking here.
The details of the method will now be outlined before returning to the question

of its significance and limitations. .
Let us calculate the light scattered from a small element of volume, v, of

refractive index, n, when immersed in a fluid of refractive index, no. By using
equation (6), the radiation field at a distance r will be:

...... : 472 ¢
E = ——Mcosgz(zo—l- r—cf) . (10)
Nr A
# The derivation of this rather unfamiliar form of Boltzmann's expression from the ususl form which applies
at constant votume and energy, W = £AS/X i3 as follows. Consider o mags of fluid containing the small velume
o bein thermal equilibrium with & Jarge reservoir of material and the whole system to bs isalated so that its energy
and volume are constant. Now Jet a reversible change take placa to produce the fluctuation in the amall volume.
The probability of the fluctuation will be the exponential of the entropy change of the systemas a whole, ASy, since
the conditions are such that the above equation applies. But if AS; and AS; are {he entropy changes in the fluid
and reservoir, respoctively, ASp = A8y -+ A8, Bince the change is reversible and AH; must bo zero, ASy =
AH/T = — AHp/T. Therefore, AS; = &Sy — AHy/T = — AFg/T. Substitution in the first equation gives the
desired relation. The demend that the change be reversible is equivalent to demanding that it take place at con-

stant temperaturs and presaure.
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where p is the dipole moment per unit volume and P is the moment induced in
the volume element v, We will separate pinto two parts: p, equal to the aver.

age moment per unit volume in the rest of the fluid; and Ap, the fluctuation from
the mean, so that:

P =po+ Ap = (s + A)E, an

where E, is the effective incident field. Since the part of E' due to p, is exactly
the radiation field which would be produced by a homogeneous medium of
index ny, this will be exactly cancelled by other fields as we have previously seen,
The only part of E' which survives is that due to Ap.  We therefore write:

B o= 4x? cos ¢ AaE,u,

27
er €08 —= (@ + r — ¢l (12)

The intensity is ¢ times the fime average of the square of E over 4r:

I = 2T C0S (13)
)\4‘1-.2
This is the equation if the incident light is plane polarized, We will return to
the unpolarized case later.

It is now necessary to calculate the mean square of the fluctuation in polariz-
ability, Ae?, which appears in equation (13), First of all, we note that the
polarizability is a function of the density and concentration, In this paper we
shall give the derivation making use of the concentration as the only fluctuating
variable, since this is the more important one in polymer solutions, The calcu-
lation involving density fluctuations is not essentially different.

The polarizability is an approximately linear function of the concentration
over a small range. It is therefore possible to write:

e = 2% ag 11
og

for the fluctuation A« in terms of the fluctuation Ag in the concentration.
The polarizability of a volume, 1y, of material exposed to an external radiation
field is related to the refractive index, n, of the material by:

s o

= 15

“ Az (15)

Therefore OQa _ n On (16)
o9 2rog

— 2 2__
and Aa? = n_(gr}) Ag? {17
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All guantities in this equation are measurable constants except Ag?2. However,
if the relation between g aud the free energy is known, Ag? can be calculated
with the aid of equation (9),

Consider an element containing w; grams of solute in a volume # at its equilib-
riwmn state, At the fluctuation state, these w, grams of solute will be contained
in the volume v; of solution. Then the fluctuation in concentration, Ag, is:

A =g —go=—— — (18)

If the weight of solvent in the volume element in the equilibrium state is wy,
and in. the fluctuation state is w;, and the density of the solution {assumed to

.be constant) is p, then

" E Wi + uy (19)
»

and o = w + w (20)
p

so that Ag = e NN (21)

!
ty -+ we  wy W

wap(wn — wy)
or g = — 22
- {wy + wy)(w + 1) @2
Letus define -~ ™ Ay = 1w, ~ wn (23)

B (o + w2)® + Ay + wy)

But Awi{wy + ws) in the denominator is small as compared with {1, + w,)? and
may be neglected. Then: .

—wep(Awy) _ _ Awge (25)
(w10 + w2)? Pty

If n, represents the number of moles of solvent; thatis
= w/M, (26)

where M, is the molecular weight of the solvent, we may substitute in equation
(25) and obtain:

. ﬁrf[lg'g( Anl) (27)
pto

Ag =
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The free energy change accompanying this concentration fluctuation is equal
to the differences in the free energy changes involved in removing the ny moles
of solvent from the solution at its equilibrium concentration, g,, and adding it
to the solution contained in the element (of instantaneous concentration, g)
reversibly, At the end of this process, the concentration of the solution in the
element should equal the fluctuation value of ¢'.  Therefare:

e [ e

oFy - oF ozl
But, O () =€ qa 29
! (anl), (anl)w o (Am) @)

Since the fluctuations are small, higher order terms may be neglected. Also,
the partial molar free energy, F, ¥ defined as:

Fi = (b_F) ) (30
bnl
Therefore: AF = E(%) { Any)? 3D
2 am .
Substituting in the value of An, from equation (27);
1, aﬁ'
AF = P2 ( - 4) Ag)? (32

We may then find the probability of such a fluctuation in concentration from
the Boltzmann eéxpression, equation (9). This is:

W(Ag)d(Ag) = € exp[ _ 290’;;”(— %’;‘)(Agw]du\g) (33)

The mean square of Ag is evaluated from the integral which defines it:

a7t = [ R (34a)
kTM:qgo

“n(-D)
Pty 29

The intensity of the scattered light for unpolarized incident light is now:

 (34b)

2
¢ cos? ¢n’ (?)kTﬂﬂgvﬂEﬁ,
i .

= (35)
2)\"!'2,0( — ?Ei)
og

I =
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All the factors in this equation are directly measurable except E,, the “effec-
tive” field. This is the field due not only to the incident light, but also that re-
sulting from the displaced charges in the rest of the medium. Since E,is pro-
portional to p, and p is proportional to the external field, F, proportionality

must exist between E, and E.
E. = tE (36)

An exact evaluation of the factor £ would involve an integration over the fields
produced by all the rest of the medium, To date, this has not been accomplished,
except by the use of the following rather drastic approximation due to Lorentz
(12): themedium is assumed to be a continuous, uniform fluid, enclosing a cavity
in which the volume element whose scattering we are studying is placed. 1t is
then found that the factor is strongly dependent on the shape of the cavity,
ranging in value from n? for a needle-shaped space parallel to the field to unity
for a pillbox or disk cutting across the field, For a sphere, the value is (n? 4 2)/3.
The situation is further complicated by the possibility that the part of E, due
to polarization may fluctuate and that there may be a correlation between these
fluctuations and those in .

At present, then, only a rather unsatisfactory statement may be made con-
cerning £; it is a factor depending on the constitution of the material whose value
probably lies between n? and unity, perhaps near (n? + 2)/3.

If we note that the intensity of the incident light is Iy = (¢/87)E;, the scatter-
ing from one volume element is:

2
4x% cos? ¢Eint (gg) ETMgrol,

bﬁ‘;) '
D, | — 201
T ( g

We can now add up the scattering from all volume elements to get the total
intensity with polarized incident light, Since the sum of all the values of 15 is V,
__the total volume, the total scattering is:

I' = (37)

2
4x? cos? ¢in? (gﬂ) RTM VI,

I'= 97 _ (38a)
rih“p (_ 9&')
og

If the incident light is unpolarized, a formula corresponding to (8) is obtained:

2731 + cos? 0)£n? (gf)?kTMngIg
I' = g (38b)

bF‘l)
it [ 9
? ( Og
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The “turbidity,” 7, is the fraction of the incident ki

ght scattered per cubic
centimeter in all directions, This is found by

integration to be;

2
32nigin? @f) ETMg

- (39)
o (-3)
og

This is the expression for the turbidity due to concentration fluctuations,

To these equations should be added a term which results frem the density
fluctuations, and is essentially equal to the turbidity of the pure solvent, in order
to obtain an expression for the tarbidity of the solution.  For polymer solutions,
this term is small, Including it, the complete formula for the turbidity is (7);

on\: Mg [on\e
32052k T z(m) __,19_(_)
e T aty +( bF.) 2 (40)
R
og

where 8 is the compressibility, — @ In V /OP),.
We have now obtained a formy

la relating the intensity of the scattered light
from a solution with the derivatiy

e of refractive index with respect to concentra-
tion and the free energy of one component (the solvent). The principal use of
the equation js in obtaining the latter quantity from the first two.

In dilute solutions van’t Hofl’s [aw applies, and the molecular weight of the
solute may be obtained from equation (41): ‘
' F T,
_ %R - VAT (41)
ag .-"Iz

where ¥V, is the partial molar volume of the solvent,

In polymer solutions the deviations from van’t Hoff’s law
ous, In this case, the molecular weight may be obtained b
results to infinite dilution. At the same time, the deviat
which are themselves of considerable interest in the theory of solutions, may be
obtained by studying the scatlering as a function of concentration, For advan-
tageous methods of handling such data the reader is referred clsewhere (7, 19).

are frequently seri-
y extrapolating the
ions from ideality,

Discussion

In this way the use of the theory of fluctuation phenomena av

oids the com-
plications encountered in a direct sum

mation ‘of the radiation fields from an
assembly of molecules, One may reasonably question, however, the exactness

of the assumption that the fluctuations in one volume, 1, are independent of
those in the surrounding volumes. The answer to this question was given by
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Ornstein and Zernicke (15). The assumption is valid if the range of the inter-
_ molecular forces is of a smaller order of magnitude than the light wave length.
| The same conclusion has been reached from a treatment of the problem by the
direct summation method by one of the authors (21), For polymer solutions,
in which some of the molecules themselves are larger than the wave length,
j the assumption may not always hold. The theory of this effect will be discussed
Jater in connection with the scattering from large motlecules, but it may be re-
marked here that it offers a possible method of studying the internal structure of
such solutions.

: The least certain part of the derivation was that concerned with the internal
ﬁ " field factor, £ Theoretically, it seems most likely that it should have the value
appropriate for a sphere, (n? + 2)/3, but.the only experimental results (7, 19)
© " available indicate a value of nearly unity.  More work on this point is impera-

tive. . .
IV. SCATTERING OF LIGHT FROM LARGE MOLECULES

~If a scattering particle is small as compared with the wave length of the
light, it may be considered as a point source of radiation. It has been previously
shown that the dependency of the intensity of the scaltered light on the angie of
observation would then be entirely & funetion of the projection of the induced
dipole moment on a normal to the direction of observation, and would, for un-
polarized incident light, vary as (1 + cos? 8). In Figure 2 (page 93), a polar plot
of this angular distribution is shown. It is seen that the intensities are sym-
metrically distributed about the 90° axis.
If, however, a linear dimension of the molecule approaches the magnitude of
- the wave length (greater than ' /10 to /2 of the wave length), the radiation from
all of its component dipoles would vary in phase, and the molecule could not be
considered in its entirety as a simple point source. Since the radiation from the
"component parts of any one molecule will be coherent, the resuiling scattered
" intensity will then be proportional to the square of the vector sum of the anpli-
"' tudes of the scattered rays from all of the scattering elements. This process will
" result in an inierference patlern which is characteristic of the size and shape of
the particle,

" 'This phenomenon may be readily illustrated with the aid of a simple example,
‘The sphere in Figure 4 represents a scattering particle of dimensions which are of
" the order of magnitude of the wave length. Consider two scattering volume ele-
‘ments of the particle at A and B, and two incident rays, R, and R,, which are in
“phase at plane P. In reaching the observation point, 0y, ray Ri which goes the
. longer distance to reach element A, goes the longer distance AO; while ray Ry,

which goes the shorter distance to the glement, goes the shorter distance to the
observation point. Thus, the differences in path lengths are partially compen-
sated for, and the rays do not get very much out of phase.
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For observation point 0., however, the situation is reversed; the ray which
goes the longer distance from the plane to the element goes the longer distance
to the observation point. If, as in this illustration, the molecular dimensiong |

4/ DESTRUCTIVE CONSTRUCTIVE
\NTERFERENCE INTERFERENCE

Fig. 4. Scatlering from a large particle

are something less than a wave length, the path difference will be such as to pro-

duce a phase lag that will result in destructive interference of the lwo rays,

Therefore, it may be seen that, as a result of this interference effect, there will be
an all-around decrease in the scattered intensity. Since destructive interference

will he more probable between rays scattered in the backward direction, the
radiation envelope will no longer be symmetrical.

Fig. 5. Radiation diagram for seattering from a large particle

A typical first-order interference patlern of this type is shown in Figure 5.
For still larger particles, path differences of grealer than one-half wave length will
be produced and higher order interference will occur. More than one intensity
maximum will then be experienced (3).

The evaluation of this interference effect for particles of simple geometric
shape has been studied by Mie (14). Iis exact evaluation is difficult, however,
when the refractive index of the particle is much different from that of the me-
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m in which it resides. The problem which then arises involves the determina-
n of the effect of the polarization charges on the surface of the particles on the
]eétric field acting upon a particular dipole as a function of the position qf .that
ipole in the particle. A solution of Maxwell’s equations under these conditions,
ven for particles of simple geometric shape, usually leads to complicated expan-
sions, the application of which is difficult, Blumer (2) has obtained integrated
olutions of this type for spheres.

P. P. Debye and P. Debye (5) have shown that a treatment in which the ap-

“proximation of no refractive index is made is sufficiently accurate for many pur-
oses. 'They have obtained solutions for particles having such shapes as spheres,
ods, and random coils. The last two ghapes most nearly correspond to those of
‘high polymer molecules and they are considered here.
“The method of solution is to consider the large molecule to be mad'e up of a
Jarge number of submolecules, each of which is small as compared with t‘he \\:'a.ve
Ilength and may be considered as a point source of radiation. The polarizability
f one of these submolecules is then simply equal to the algebraic sum of the
‘polarizabilities of its constituent dipoles.

jecular dimensions

irection, the

Ev  REFERENCE

Fig. 6. Scattering from an element of & large polymer molecule

- Consider a molecule, ON, residing in the field of the light wave {Fig. 6). Itis
" located by the Cartesian coordinates, 0X, 0Y, and 0Z, and is divided into a large
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number of elements (0, 1, 2,3, ...m,...n, .. N). Letrg ey, .o Tp. ..
¥,...ry be vectors, drawn from the origin, 0, and ¢ be a unit vector pointing in
the dire~tion of propagation of the incident light. The opservation point, P, is
located far out on the X axis. As before, E, and E, are the horizontally and
vertically polarized components of the electric field vector of the incident light;
E. and E, are the components for the scattered light, and I" is its intensity.
The field of a scattered ray from the mth submolecule is given by equation (6)

and is:

(EDn = K cos 2_;3 ('t — dy) (42)
;

i

where K is a constant involving the incident amplitude and frequency, the
polarizability of the submolecule, and the distance from the molecule to the
_point of observation*; \and¢’are the wave length and velocity of the light in the
medium in which the scattering takes place; and d, is the sum of the distance
from an arbitrary reference plane to the mth element and the distance from that
clement to the observation point, That is:

dp = rpé — (OP — 1) (43)
Since OP represents an arbitrary constant phase increment for all of the ele-
ments, it may be neglected. Then:
d, = tp{é — i) = rpd’ (44)
so that _
). = K cosz% (@l — Ta’) : (45)

The intensity, I,, due to these horizontal components may be obtained with
the aid of Poynting’s vector and is (the bar represents a time average):

) ¢ —v e | X R
5= S8 - E{E(E)m} - (46)
By substitutir;g:
I = el T{ZN: Kcosz—w ('t — rm'd')}zdl (47)
4= T o Umae A

where T is the period of vibration (\/c"). By expanding and carrying out the
time integration, it is seen that: '

- N N
I, = _C_K_{g + 3 3 cos

31!’ g A=

2}\—#- {en — r,)d’'] (48)

# For all points in the molecule, this distance may be considered essentially constant in this term,
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The double summation may be evaluated as an integration if there are a large
‘number of terms, This is true in this case. From a modification of the funda-
mental theorem of integral calculus, it may be shown that:

Z?’ﬂ(i. N = LLSFG ) ali ) didf

‘where F(i, ) is the number of terms between i and (i + di), and Jand (j 4 dj).
Therefore:

. sfi{g + f ' f " Bty ) cos 2 [(en = 1) Mradr,  (19)

i 8r

Since, however, the molecule is free to move about at random, the probability of
finding any particular submolecule at any particular place in solution will be
constant, so that the probability funetion actually depends only on the separa-
tion of m and n. Therefore, the double integration may be reduced to a single
integration over the vector differences between the r values, so that:

I cK*{N +V Flr, —r;) c:osi?{.“r [(rn ~ Fa)d'Jd(rn — v} (50)

2 JUm—rn)

:]ightin the
he distance

nd F(rn, — r,) is the number of pairs of submolecules separated between the
stances of (v, — r;) and (r,, — v,) + d(r,, — r,). The nature of this function
is determined by the size and shape of the molecule, Let us first consider the
case of a rod-shaped molecule,

he Rod~-Shaped Molecule

- The probability function for a rod is relatively easy to evaluate. It may im-
mediately be seen that the chance of finding pairs of elements close together is
greater than that of finding them far apart. Furthermore, it may be seen that
this relationship is linear.* Therefore, it follows that the number of elements
separated by tbe distance, r, is proportional to (I, — r). The proportionality
constant may be evaluated by integrating this expression over all values of r and
-equating to the total number of possible pairs, N(N ~ 1)/2. That is:

[ O = P dr = Q@"_z:}l : 1)

so that C = [N(N —"1)]/L,

. 'This equation will give the number of elements separated between the scalar

distances of r and (r + dr), while it is required by equation (50) to have a distri-

" bution function of the vector separation, F (rm — r,). This function must be of

such a nature that its integral over possible orientations in space reduces to the
* 1 L is the lenglh of the rod, there will be one pair of submelecules, 0 and ¥, separated by the distance L; iwo

pair, 0 and (V¥ — 1), and 1 and N, separated by the distance (L — m) {where a is the length of a submolecule);
““threa pair by (L — 2a); etc,
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function of the scalar separation. Since it is obvious that the function will be
independent of the angle of orientation, this may readily be accomplished by di-
viding the scalar function by 4#r?, Therefore:

Fr, —1,) = NN-1)(L-n

52
L2 dqr? (52)
Substituting into equation (50) gives:

'K {N NV —1) (L—7)  2r
I’ = E_.M_J{W S = g —
=S R tmor) dart AN

%

[(rm - I‘,.,)'d’}d(l‘m - rn)} (53)

By substituting for (r,, — r,)-d’, its definition rd¢’ cos &, where ¢ is the angle be-

tween (r,, ~ r,) and ¢’, and by integrating over the spherical volume differential,
2zr? sin ¢dgdr, one finds that:

I = cK*N(N ~ 1) {}f” sin i du _(sin m)2+ 2 } (54)
167 T/ 0 21 T N -1

where z = #Lo’/A. But2/(N — 1) < 1/2. Therefore, by normalizing so that
I, = 1 when ¢’ = 0, it is seen that: ‘

2z - . ]
I = 1] sinu, (sm a:) 55)
xJo u x

The vector, ¢/, may be readily related to the angle, 6, between the unit propa-
gation vector, d, and the propagation vector of the scattered light, i. A simple
consideration of its geometry shows that its magnitude is:

o' = 2sin 6/2 (56)

If the total scattered intensity, (I, + I'). is considered, then the angular de-
pendency of intensity as given by equation (53) would have to be muHiplied by
the factor (1 4+ cos? 8) resulting from the resolution of the polarized components
of the incident light,

The Randomly Coiled High Polymer Chain

The randomly coiled high polymer chain differs from the rigid rod in that a
link of the chain usually makes a definite angle with the preceding link, and is
free to rotate (on a cone-shaped locus) with respect to a plane determined by the
preceding two links. The probability of finding two particular submolecules a
given distance apart in the resulting snakelike configuration would have to be
given by a more complex type of distribution function.
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This problem is similar to the classical statistical problem of the “random
alk,”’ and has been studied, for example, by Kuhn (11). The distribution
unction for a molecule containing a large number of links may be approximated
y an exponential type of function, and is:

3\ 1x,
Pde = (3" W ar (57)

ﬁ'at the function will b-e
he accomplished by di-

shere P(r)dr is the probability of finding two particular links a vector distance
part between r and r 4 dr; and R? is the mean 2, This function is normalized
othat f,P(r}de = 1. .

R? may be related to the physical characteristics of the chain, and is given by
he relationship:

re ¢ is the angle be- 1 — cos q&)
i i R=p{—F"") A2 58)
_:dlﬁ'erentlal, (1 ¥ cos ¢ A (

here 1t is the number of links between the two links that are separated by the
ean square distance, R?; ¢ is the angle between the two links; and A is the
gth of a link. Therefore, it is seen that R? = kn.

“The total number of links separated by vector distance between x and r + dr.
F(r, — r,) may be found by summing equation (57) over all values of n.

F Z( : )% W e (B
W = 12) = = \2nkn/ © _[ s (21rkn

where [V is the total number of links in the chain, and F(n)dn is the number of
values of n between r and n -+ dn. It is similar to the distribution function for
a rigid rod, and proves to be:

Fln)=(N—-n+1) {60)
By substituting this value of F(r,, — r,) into equation (50), it follows that:

. eK: (N 2%
L= %;{'5 +f[ S - ’“)""]X

| [ov-n+ D(;2-) e dn e - YNNG

On converting to Cartesian coordinates and integrating one finds that:

o an
) e 1 ®dn (59)

g =FYN NN=w . q_y (62)
8z (2 ut

where n = ?(@)’
3V A
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Since N > u, the N(NV — u) term in the multiplier approximately equals A, :
Then, normalizing so that I, = 1 when u = 0:

e 2w~ ‘_
In“u fe (I - )] (63) :

2
The angular dependency of the intensity of the light scattered from large hig]
polymer molecules shaped like rigid rods and like randomly coiled chains hg
been computed. These are the two extreme cases. The links of actual hig|
pulymer molecules are usua]]y not completely free to orient at random on th
cone-shaped locus formed By the valence angle, but there is “restricted rotation’
and the potential energy varies as a function of the position on this cone.

10

os}
FOR ROD: = J (E04) gu - {02y

rrtcr

o
o
T

where X= ==

<
-~
¥

FOR CoIL: 1=, [e*-(1°V)]

where Va2 (’-’% )

I'~RELATIVE INTENSITY {NORMALIZED)
&
L)

051
04F
034
02 1 1 1 — 1
0 1 F3 3 4 5 6
{X}-FOR ROD
{JVI-FOR COIL

Fig. 7. Angular intensity distribution for a rod and a ecoil

Debye (5) has derived the equation relating the mean distance between two
particular links with the number of links between the two, the valence angle, the
‘length of a link, and the amount of restriction of the rotation. This equation is:

(1 — cos qb)

——— g

1

B =n +100j¢; Az (64)

where g is a factor characterizing the restricted rotation. It is equal to the ratio
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tely equals /V2. he time average to the static value of the projection of a link on the base of
e right circular cone which forms its locus of rotation. (For free rotation, ail
sitions will be equally probable, and the time average projection will be zero.)
 ‘Plots of equations (55) and (63) are presented in Figure 7.

The derivations of this section were made on the assumption that the dis-
symmetry originates from isolated molecules, and that the interference resulting
in the angular dependency is among rays scattered from parts of any single mole-
cule. It is possible, however, that radiation from adjacent molecules in more
concentrated solutions is also coherent and will contribute to the interference.
This intermolecular interaction is related, theoretically, to the interference of the
scattering from an asserbly of small molecules of a binary mixture which has
heen previously discussed. Therefore, it should be possible to relate the concen-
tration dependency of dissymmetry to the concentration dependency of the inten-
sity of the scattering at any particular angle. This relationship has not as yet

been published.

Discussion

By an appropriate summation of the scattered amplitudes from large scattering
particles of various shapes, it has been possible to express the relative intensity
f scattered light at any angle for a particularly shaped particle as a function of:
(1) the ratio of a characteristic dimension of the particle to the wave length of the
“light in solution; and (2) the angle of observation. Tt has been shown that these
relationships represent a decrease in the all-around scattered intensity and a
“modification of the small particle scattering laws is in order.

This relative intensity distribution may be readily expressed in terms of abso-
lute intensities, for a re-examination of Figure 4 (page 103) shows that no path dif-
ference, and hence no destructive interference, result between rays scattered in
the forward direction at 0° regardless of the separation or distribution of scatter-
ing elements in the particle. Therefore, both large and small particle scattering
laws must correspond for scattering in this direction ; and since we have nor-
" malized our relative intensity equations to unity at 0° (¢' = 0), the absolute
~ scattering at any angle may be found by simply multiplying the relative intensity
by that predicted by the small particle law (Rayleigh scattering). In the deter-
mination of molecular weights from 90° scattering measurements, the observed
intensity must be divided by this relative intensity in order o correct the scatter-
ing resulting from concentration fluctuations for the reduction due to intramolec-
ular interference. '
In view of the lack of knowledge regarding molecular size and shape, it is
usually necessary to characterize the angular distribution curve experimentally.

For the usual first-order interference for scattering from particles of homogeneous

size, the angular distribution curve may be adequately characterized by measuring

the ratio of the intensities at two angles symmetrically located about 90°, This
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simplification is possible because the form of the intensity distribution curve js
quite similar for any molecular mode) if the largest dimension is somewhat less
than the wave length of light. An extrapolation of this dissymmetry ratio to in-
finite dilution of the scattering solution serves 1o eliminate the infermolecular
effect.

The angular distribution of intensity is also indicative of the size and shape
of the scattering particle in solution. It is possible, for a particular shaped par-
ticle, to plot a curve relating the dissymmetry ratio to a characteristic size of the
molecule. Thus, if one assumes a model for the molecule, a dimension may be.

~determined. The correctness of the model chosen may be lested by comparing
this size with one computed for the model from such information as the degree
of polymerization and length of a monomer unit in the case of polymer molecules.
The application of this procedure with respect to both molecular weight and size
for the case of cellulose acetate is the subject of a current paper (19).

V. DEPOLARIZATION OF SCATTERED LIGHT

In the treatment of scattering developed in the first part of this article it was
considered that a periodic wave incident upon a molecule induces a forced oscilla-
tion of bound charges synchronous with the applied field. Since the bound
charges oscillated in the same direction as the electric vector in the incident light,
the transversely scattered light should be completely polarized in the vertical
direction. However, light scattered at 90° from solutions, as well as gases and
pure liquids, is found in general to be incompletely polarized, that is, there is,
both a horizontal and vertical component, the ratio of which is called the de-
polarization value. The quantitative consideration of this effect is necessary for
two reasons. First, all the horizontally polarized light and a small amount of
the vertically polarized light originate, not at the expense of the scatiered light
previously cansidered, but from a new effect. Consequently, the absolute inten-
sity of seattered light is greater than that calculated by equation (39) and is not

_directly proportional to the square of the polarizability. It is clear that this

effect must be taken into account when measured Lurbidities are used for molegu-
lar weight determinations. Second, since the explanation of depolarization
must lie in the fact that the scattering centers, the molecules, are asymmetric
and anisotropic, it is reasonable to expect that, if the relation between cause and
effect can be determined, depolarization measurements will contribute to our
knowledge of the size and shape of molecules. These two aspects of depolariza-
tion of scattered light will now be discussed in turn.

Increased Intensity of Scattered Light Due to Molecular Anisotropy (1, 4)

Let us recall that the intensity of scattered light is proportional to the square
of the induced moment, which, in turn is proportional to the square of the polariz-
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ty for a given feld, E. Thatis, p = «E, The induced moment will have
ame direction as the incident electric vector only if the polarizability is inde-
dent of direction; this situation can only occur in the case of spherical, iso-
Opi.c. molecules.* Inthe general case, « depends on the direction and is actually
tensor. It will always be possible to find a rectangular coordinate system for
ich the nondiagonal terms of the tensor vanish, The three axes of such a co-
rdinate system correspond to the three principal polarizabilities of the mole-
e A, B, C. An electric vector incident along any of the axes will induce 2
moment parallel to itself. This situation may be described by:

= BE,; py = CE, (65)

But, of course, generally the incident elec-
tric vector does not coincide with the
principal polarizabilities, and conse-
quently the direction of vibration of the
scatlered light will be slightly inclined to
the light vector, and a weak horizontal
component may be detected in the trans-
versely scattered light,

We now consider quantitatively the
general case of an asymmetric and/or
anisotropic molecule whose principal axes
of polarizability, A, B, C, determine a
set of coordinates, X, Y, Z, which have a
common origin with the X', ¥, Z’ axes,
The orientation of the molecule is fixed
by the system of three angles which
orients the common type of geographic

~globe, The angles, known as.the Eulerian angles, are shown in Figure 8. Axis
Z’ may be regarded as a polar axis, which is oriented by giving angle 8, between
it and axis Z. To fix completely the orientation of axis 2’ requires one more
angle, . This is taken as the angle between the fixed X axis and line ON, in

L X ] Y z

X €0s ¥ €os ¢ €03 § — sin  sin ¢ sin ¢ cos ¢ + cos ¢ sin ¢ cos @ — sin @ cos ¢
Y’ wsin\lzcos¢cosﬂn-cos¢'sin¢ cos ¥ cos ¢ — sin ¢ sin ¢ cos § sin @ sin
z sin @ cos ¢ sin ¢ sin ¢ cos 6

* This development sssumes tho molecules to be small. A apherical, isotropic molecule, so large that the elecirio
vector changes appreciably in passing through the particle, will give riso to a horizontal component in the scattered
light as will be shown in the next eeclion. This component is formed at the expenss of the vertical component and
hence does not affect the total acattered intensity to the degree of approximation considered here,
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which X’Y" plane intersects the XY plane; the orientation of the molecule ig

“then specified completely by giving the angle ¢ that X’ makes with ON, The
cosines of the various angles between the different axes are given in the table on
page 112,

If the tensor components referred to the fixed coordinates are denoted by azy,
their values are given by:

oy = Y, oy, 08 XX’ cos YY' (66)
zlyr

a,, is the value of o,, when the two coordinate systems coincide. Thus the
nondiagonal terms, o},, «,, elc., are zero. The diagonal terms are equal to
the principal polarizabilities, that is, a;, = A, a), = B, and &, = C. With the
help of these relations and thé table of cosines, the tensor components may be
evaluated by means of equation (66). Now that we have obtained the polari-
zation tensor components, the induced moments in the X, Y, and Z directions
may be calculated. It is a ratio of these moments that is equal to the de-
polarization value.

Consider ., E,, and E, as the components of the incident electric vector, E, in
the directions X, Y, and Z. Then a component of the induced moment, say
D, will be given by:

P = aerz + a’zyEy + G'zzEz (67)

The square of this component of the induced moment, p?, will be a measuie of
the intensity of that part of the scattered beam in which the vibrations are re-
stricted to the OZ direction. But in a large number of randemly oriented male-
cules the light scattered is uncorrelated in phase and the average intensity per
molecule is obtained from the following expression for such an average:

52 — fu'.f?'.ﬁ”’pf sin 6 df d¢ dy
T TS S T sin o do dg dy
Carrying out the designated integrations leads to:
i = ENH/s(A? + B2 4 C) + ¥/5(AB + BC + AC)} +
(B + ED{(A? 4 B* + C* — AB — BC — AQ)] (69a)
A similar treatment for p, shows thai:
Bi = E{YA? + Bt + C) + */u(AB + BC + AQ)| +
(B + ED{1/s(A* + B* + C* — AB — BC — AC)} (69D)

The depolarization value for incident unpolarized light (E, = E, E, = 0, E, = E)
is given, of course, by the ratio of the horizontal to the vertical components,
The horizontal component is made up of equal contributions from both E, and E,.
Each of these contributions is proportional to pJ. E. makes a similar contribu-

(68)
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tion to the vertical component which is dominated by the large contribution from
which is proportional to p,, thus,
_php _2A*+ B+ G — AB - BC — AC)
P TR p:  HAT+ B+ () + AB + BC + AC

2z

[f we equate (A + B + €)/3 to a, the mean polarizability of the molecule, and
denote by +? the quantity (A2 4- B? + C? — AB — BC — AC), the expression
for p may be reduced to the following:

6/45?
S A 71
PR Y 1/15y e

From this it may be seen that the vertical component, whose intensity is propor-
{ional to the denominator, is no longer proportional to o but to o® + 7/45+%
Moreover, the intensity is further increased by the horizontal component. The
net effect is that the scattered intensity, originally calculated as being propor-
tional to o? for isotropic molecules, is for anisotropic molecules proportional to
a? -+ 13/45+%  From the previous equation:

2
B yo Lo (72)
45 6 — Tp

. Consequently, where «? has appeared in equations (8) and (13), a correction of:

13;3) 6 + 6p
1 = 73
( +6—7p 6 —~ Tp (73)

*:should be applied. Similarly, turbidities measured for molecular weight deter-
.. minations should be divided by this factor since these turbidities correspond oniy
" 1o those arising from concentration fluctuations, In the next section, however,
it will be demonstrated that this correction is applicable only if the entire de-
" polarization comes from anisotropy of the molecules. It represents an over-
correction if depolarization also arises from the finite size of the molecules.

ily per

" The Relation of Depolarization to Molecular Size and Anistrepy (6,. 16}

It is clear from the previous section that the depolarization, p,, of light scat-
tered from small molecules is intimafely connected with their asymmetry and
anisotropy. In general, the depolarization is a measure of the deviation of the
scattering particles from isotropic spheres. However, if the scattering particles
are about one-tenth of the wave length of light or more in their Jargest dimension,
the effect of size, independent of anisotropy, will give rise to depolarization.
Consequently, depolarization measurements on polymer solutions are likely to
reflect a combined effect due to size and anisotropy (and/or asymmetry); the
measurement of p, alone will not yield very definite information (13).
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In one of the early papers in this field, Mie (14) demonstrated that P inCreases
with increasing particle diameter. Gans (9) has considered in detail the scatter.
ing from model particles such as ellipsoids and disks. Blumer (2) has made the
most complete numerical investigation of the problem thus far for spheres of
various diameters. The means of resolving the effects of size and anisotropy is
due to Krishnan (10), The most satisfying theoretical treatment of depolariza-
tion in turbid media is that of Perrin (16) whose development is analytical in
nature, independent of moledular theory.

By using polarized and unpolarized incident light, three depolarization values
may be measured;

H + V, H, .

H e = 4
AN A (k)
H, _ -

Pe = F,; (“ﬂ))

7
"= }7 (71c)

H and V denote the intensities of the horizontal
scatlered light and the subseri
tally polarized incident light.
experimentally,

Krishnan has shown that, from the values of these three depolarizations, the
scattering units may be classified on the basis of size and antsofropy. With re-

spect to size, particles with dimensions less than 500 & are considered small as
compared to visible light waves.

and vertical components of the
pts refer to unpolarized and vertically and horizon-
All three depolarization values may be measured

For convenience, from now on, anisotropy will
ure from spherical shape (asymmetry) and the -

H v
Y
/
Vi Vy
Hu R,

INCIDENT BEAM—W/ITH INCIDENT BEAM—WITH
HORIZONTAL VIBRATIONS VERTICAL VIBRATIONS

Fig. 9. Components of scattered light

hich signifies the presence of different properties in different
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four classes of particles: small isotropic, large isotropic, small anisoiropic, and
arge anisotropic. Reference to Figure 9 will be helpful.

For all these classes of scattering particles, ¥, will be finite since the predomi-
nant effect of the passage through the particle of vertically polarized incident
Tlight will be the forced vertical oscillations of the dipole. In the case of small
isotropic particles, f{,, I,, and ¥, will be zero because the moment induced will
be colinear with the incident electric vector, thus giving rise to only vertically
polarized light.

- A much more complicated problem faces us when we pass from a small spheri-
cal particle to a large one. The magnitude of the incident electric vector will
vary ihroughout the particle. The solution (20) of the problem involves a de-

tailed consideralion of the effects of the different fields of all the oscillating di-

.made Lhe
spheres of

Fig. 10. Refractionofa Plane polarized wave by a sphere

poles on each other. Mie (14) solved this problem with special reference to
melallic particles. His solution is, however, too complicated to give here. In-
stead, the following crude picture is presented which demonstrates the essential
features. A plane wave upon encountering a spherical particle of higher refrac-
tive index will behave as shown in Figure 10, Refraction causes the incident
electric vector to pass through the particle at an angle so that the light scattered
transversely in the plane of the paper will possess a horizontal component, H,,
Complete interference is not possible hecause the scattering from different parts
of the plane shown in the figure will not, he in phase. On the other hand, consid-
ering the sphere in three dimensions, many light rays will be refracted obliquely,
This means that most of the induced dipoles will also give rise to a vertical com-
ponent, ¥y But this kind of scattering will be destroyed by interference since,
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for any dipole in the hemisphere jn front, of
& corresponding dipole in, the hemisphere be
tance from the observer. Thus there is no
no H, component, For large spherical parti
and the much larger ¥, component,
For smal] isotropic particles (17), H;, will be finite for a different reason, Th;j
is evident from the discussion in the fi

The sca.
8 point sources characterizeq by their polarizab;).

1cment, which woyld be horizontaj for the isp.
trapic particles, is jn this cage deflected approximately in the direction of the axis

of greatest polarizability in the particle, Thus {}e induced moment will gen-
erally have an obliyue orientation which gives rise to a horizontial componeni
when the incident electrje vector is horizontal, Exactly analogous reasoning
applies to H_ and H,; consequently, all thege components are fipjte and equal,

Finally, for the large anisotropic particle, the magnitude of the various com-
Ponents can be found by adding

Thus, H, and Vx will be finjt
graph. This effect holds also for H,,
causes f, to be fip; opic particle, Consequently, H, is finite
but larger than f, or v,

All these results are summarized in the tapje below, together with the values
of the three depolarizations that result, The plus sign denotes a positive value
between zero ang one for the depolarization,

t principle is obvious from this table:
three depolarization values permits the classification of

respect to both size and anisotropy. Moreover, these
onotonically increasing functions of

follow changes in Size angd anisotropy e
tering units remain within one of the
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ity ellipsoids, The induced n

the measurement of the
the scattering units with
depolarization values are
size and anisotropy. This permits one to
ven though during all the changes the scat-
above classes, Indeed, at present, this is
olarization measurements, for in this man-
be followed as a function of solvent, addi-

lar weight, and concentration, It should
olarization is that aris

8. This is of ne theo
Wer concentrations,
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retical interesi and

Typa of particle

Small isotropic 0 +
Large isotropic 0 +
Smal! anisotropic + +

+ +

Large anisotropic
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ére will be Further examination of the table shows another useful principle in the study
same dis- of polymer solutions. When p, is finite, that is, in the case of anisetropic par-
y, there is ticles, deviations of p, from unity may be used as a measure of particle size. If

‘the value of p, is close to unity, then one may separate the contribution of anisot-
ropy and size o p,. The portion due to anisotropy is given by 25./1 + p, and
‘he remainder is due {o size,

For all cases noted in the table, the relation H, = ¥, holds. This is merely an
‘example of a general theorem which permeales classical physics. It is known as
e Law of Reciprocity since its establishment by Lord Rayleigh. Although
Krislman made considerable use of this law, it remained for Perrin (16) to demion-
strate its range of applicability in the general phenomenon of scattering. For
poh mer solutions, the law should be valid if theré are a large number of particles
aving no preferred orientation in the plane containing the incident and scattered
eams and if there are no optically active molecules in the solution.

“The Law of Reciprocity may be combined with equations (74a), (74b), and
(74c) to give a relation between the three depolarization values. This important
'i‘élation, known as Krishnan’s relation, is:

wmpunent

141
Pu = i (75)

14+ 2
Po

t is useful because it permits the evaluation of one of the depolarization values
when the other two are known, or it may be used to check experimental data.
his relation is particularly valuable for the evaluation of p, which is often ex-
tremely difficult to measure accurately.

 We may now return to the question of the anisotropy correction discussed at
end of the previous section. It is evident now that the p, value for a polymer
ution may in general contain a cortribution from the effect of size alone.
hus, if the measured depolarization is used in equation (73), an overcorrection
Aor the scattering due to fluctuation in orientation results. The proper value of
“the depolarization for use in this correction would be 2p./(1 + p,) based upon
1he value of p,.

SUMMARY

In this short review, we have covered four main topics: the scattering of
light from ideally small, isotropic molecules; the scattering from solutions coni-
:"POSed of such molecules; - the scattering from large chain molecules; and the
scattering from anisotropic molecules, large and small. From a measurement
of the intensity of the scattered light, with suitable corrections if the molecules
are large or anisotropic, one may determine molecular weights, and from a meas-
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urement of the angular distribution of intensity, average linear dimensions of the
molecules, Measurements of depolarization yield more gualitative information
on size as well as data on the intrinsic molecular anisotrapy.

The reader may note that no treatment has been given of concenirated
solutions of molecules which are Jarge with respect to the light wave, Such a
theory is still in the formativg_ stage. From it may be expected to come infor-
mation on the arrangement of the molecules in the solution.
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